精英家教网 > 初中数学 > 题目详情

【题目】如图,在等腰RtABC中,∠ABC=90°,AB=BC,D为斜边AC延长线上一点,过D点作BC的垂线交其延长线于点E,在AB的延长线上取一点F,使得BF=CE,连接EF.

(1)AB=2,BF=3,求AD的长度;

(2)GAC中点,连接GF,求证:∠AFG+∠BEF=GFE.

【答案】(1)5(2)见详解

【解析】

(1)易证DE∥AB,可得△ABC∽△DEC,即可证明△CDE为等腰直角三角形,根据CE即可求得CD的长,根据AB可求得AC的长,根据AD=AC+CD即可解题;

(2)连接EG、BG,易证BG=CG,∠ABG=∠ACB=45°,即可证明△GBF≌△GCE,可得GE=GF,∠BGF=∠CGE,∠AFG=∠BEG,即可证明△EFG为等腰直角三角形,可得∠GFE=∠GEF,根据∠GEF=∠BEG+∠BEF即可解题.

(1)∵DE⊥BE,AB⊥BE,

∴DE∥AB,

∴△ABC∽△DEC,

∴△CDE为等腰直角三角形,

∵CE=BF=3,∴CD=3

∵AB=2,∴AC=2

∴AD=AC+CD=5

(2)连接EG、BG,证明△GBF≌△GCE.:∠AFG+∠BEF=∠GFE.

∵G是等腰直角△ABC斜边AC中点,

∴BG=CG,∠ABG=∠ACB=45°

∴∠GBF=∠GCE=135°

∵在△GBF和△GCE, GB=GC,∠GBF=∠GCE,BF=CE,

∴△GBF≌△GCE,(SAS)

∴GE=GF,∠BGF=∠CGE,∠AFG=∠BEG,

∵∠BGF+∠FGC=90°

∴∠CGE+∠FGC=90°,即∠EGF=90°

∴△EFG为等腰直角三角形,

∴∠GFE=∠GEF=45°

∵∠GEF=∠BEG+∠BEF,

∴∠GEF=∠AFG+∠BEF,

∴∠AFG+∠BEF=∠GFE.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,点A(1,6)和点M(m,n)都在反比例函数y= (x>0)的图象上,

(1)k的值为
(2)当m=3,求直线AM的解析式;
(3)当m>1时,过点M作MP⊥x轴,垂足为P,过点A作AB⊥y轴,垂足为B,试判断直线BP与直线AM的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】李明从市场上买回一块矩形铁皮,他将此矩形铁皮的四个角各剪去一个边长为1米的正方形后,剩下的部分刚好能围成一个容积为15立方米的无盖长方体运输箱,且此长方体运输箱底面的长比宽多2米,现已知购买这种铁皮每平方米需20元,问购买这张矩形铁皮共花了多少钱?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:已知在△ABC中,AB=AC,DBC边的中点,过点DDEAB,DFAC,垂足分别为E,F.

(1)求证:DE=DF;

(2)若∠A=60°,BE=1,求△ABC的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】平面直角坐标系中,已知A(8,0),AOP为等腰三角形且面积为16,满足条件的P点有(  )

A. 4 B. 8 C. 10 D. 12

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,抛物线y=ax2+bx(a<0)的图象与x轴交于A、O两点,顶点为B,将该抛物线的图象绕原点O旋转180°后,与x轴交于点C,顶点为D,若此时四边形ABCD恰好为矩形,则b的值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形的顶点在坐标原点,顶点轴上,.将菱形绕原点顺时针旋转105的位置,则点的坐标为( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】边长为2的正方形OABC在平面直角坐标系中的位置如图所示,点D是边OA的中点,连接CD,点 E在第一象限,且DE⊥DC,DE=DC.以直线AB为对称轴的抛物线过C,E两点.

(1)求E点坐标;
(2)设抛物线的解析式为y=a(x﹣h)2+k,求a,h,k;
(3)点M为直线AB上一动点,点N为抛物线上一动点,是否存在点M,N,使得以点M,N,D,E为顶点的四边形是平行四边形?若存在,请直接写出满足条件的点M,N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数y= x2(0≤x≤2)的图象记为曲线C1 , 将C1绕坐标原点O逆时针旋转90°,得曲线C2
(1)请画出C2
(2)写出旋转后A(2,5)的对应点A1的坐标
(3)直接写出C1旋转至C2过程中扫过的面积

查看答案和解析>>

同步练习册答案