【题目】如图,已知⊙O为Rt△ABC的内切圆,切点分别为D,E,F,且∠C=90°,AB=13,BC=12.
(1)求BF的长;
(2)求⊙O的半径r.
【答案】(1)BF=10;(2)r=2.
【解析】
(1)设BF=BD=x,利用切线长定理,构建方程解决问题即可.
(2)证明四边形OECF是矩形,推出OE=CF即可解决问题.
解:(1)在Rt△ABC中,∵∠C=90°,AB=13,BC=12,
∴AC===5,
∵⊙O为Rt△ABC的内切圆,切点分别为D,E,F,
∴BD=BF,AD=AE,CF=CE,
设BF=BD=x,则AD=AE=13﹣x,CFCE=12﹣x,
∵AE+EC=5,
∴13﹣x+12﹣x=5,
∴x=10,
∴BF=10.
(2)连接OE,OF,
∵OE⊥AC,OF⊥BC,
∴∠OEC=∠C=∠OFC=90°,
∴四边形OECF是矩形,
∴OE=CF=BC﹣BF=12﹣10=2.
即r=2.
科目:初中数学 来源: 题型:
【题目】某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.
(1)当销售单价为70元时,每天的销售利润是多少?
(2)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式,并求出自变量的取值范围;
(3)如果该企业每天的总成本不超过7000元,那么销售单价为多少元时,每天的销售利润最大?最大利润是多少?(每天的总成本=每件的成本×每天的销售量)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在平面直角坐标系中,菱形 ABCD 的边 AD∥x 轴,直线y=2x+b 与 x 轴交于点 B,与反比例函数 y=(k>0)图象交于点 D 和点 E,OB=3,OA=4.
(1)求反比例函数和一次函数的解析式;
(2)点 P 为线段 BE 上的一个动点,过点 P 作 x 轴的平行线,当△CDE 被这条平行线分成面积相等的两部分时,求点 P 的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,的顶点均在格点上,点的坐标为.
①把向上平移5个单位后得到对应的,画出,并写出的坐标;
②以原点为对称中心,画出与关于原点对称的,并写出点的坐标.
③以原点O为旋转中心,画出把顺时针旋转90°的图形△A3B3C3,并写出C3的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线y=x+1与抛物线y=x2+bx+c交于A,B(4,5)两点,点A在x轴上.
(1)求抛物线的解析式;
(2)点E是线段AB上一动点(点A,B除外),过点E作x轴的垂线交抛物线于点F,当线段EF的长度最大时,求点E的坐标;
(3)在(2)的条件下,抛物线上是否存在一点P,使∠PEF=90°?若存在,求出点P的坐标;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列判断正确的是( ).
A.数据3,5,4,1,-2的中位数为4
B.从初三月考成绩中抽取100名学生的数学成绩,这100名学生是总体的一个样本
C.甲、乙两人各射靶5次,已知方差,,那么乙的射击成绩较稳定
D.了解云南省昆明市居民疫情期间的出行方式,采用全面调查的方式
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在矩形ABCD中,AB=12,P是边AB上一点,把△PBC沿直线PC折叠,顶点B的对应点是点G,过点B作BE⊥CG,垂足为E且在AD上,BE交PC于点F.
(1)如图1,若点E是AD的中点,求证:△AEB≌△DEC;
(2)如图2,①求证:BP=BF;
②当AD=25,且AE<DE时,求cos∠PCB的值;
③当BP=9时,求BEEF的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若抛物线y=﹣x2+bx+c经过点A(2,0)、B(0,2).
(1)求这条抛物线的解析式;
(2)如图,点P是抛物线上一动点,连接BP,OP,若△BOP是以BO为底边的等腰三角形,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,BA=BC,以AB为直径的⊙O分别交AC,BC于点D,E,BC的延长线与⊙O的切线AF交于点F.
(1)求证:∠ABC=2∠CAF;
(2)若AC=2,CE:EB=1:4,求CE,AF的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com