精英家教网 > 初中数学 > 题目详情

【题目】如图,在ABC中,BA=BC,以AB为直径的⊙O分别交ACBC于点DEBC的延长线与⊙O的切线AF交于点F

(1)求证:∠ABC=2CAF

(2)若AC=2CEEB=1:4,求CEAF的长.

【答案】(1)证明见解析;(2)CE=2,AF=

【解析】

(1)首先连接BD,由AB为直径,可得∠ADB=90°,又由AF是⊙O的切线,易证得∠CAF=ABD.然后由BA=BC,证得:∠ABC=2CAF;
(2)首先连接AE,设CE=x,由勾股定理可得方程:(22=x2+(3x2然后由tanABF=,求得答案.

1)证明:如图,连接BD

AB为⊙O的直径,

∴∠ADB=90°

∴∠DAB+ABD=90°

AF是⊙O的切线,

∴∠FAB=90°

即∠DAB+CAF=90°

∴∠CAF=ABD

BA=BC,∠ADB=90°

∴∠ABC=2ABD

∴∠ABC=2CAF

2)解:如图,连接AE

∴∠AEB=90°

CE=x

CEEB=14

EB=4xBA=BC=5xAE=3x

RtACE中,AC2=CE2+AE2

即(22=x2+3x2

x=2

CE=2

EB=8BA=BC=10AE=6

tanABF=

AF=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知二次函数的图像过点,,与轴交于另一点,且对称轴是直线.

(1)求该二次函数的解析式;

(2)若上的一点,作,当面积最大时,求的坐标;

(3)轴上的点,过轴,与抛物线交于,过轴于.当以为顶点的三角形与为顶点的三角形相似时,求点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中,

1)如图①,点在斜边上,以点为圆心,长为半径的圆交于点,交于点,与边相切于点.求证:

2)在图②中作,使它满足以下条件:

①圆心在边上;②经过点;③与边相切.

(尺规作图,只保留作图痕迹,不要求写出作法)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】横卧于清波之上的黄石大桥与已经贯通的五峰山隧道将成为恩施城区跨越东西方向的最大直线通道,它把六角亭老城区与知名景点女儿城连为一体,缓解了恩施城区交通拥堵的现状.如图,某数学兴趣小组利用无人机在五峰山隧道正上空点P处测得黄石大桥西端点A的俯角为30°,东端点B(隧道西进口)的俯角为45°,隧道东出口C的俯角为22°,已知黄石大桥AB全长175米,隧道BC的长约多少米(计算结果精确到1米)?(参考数据:sin22°≈0.37cos22°≈0.93tan22°≈0.401.41.7

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtPMN中,∠P=90°,PM=PN,MN=6cm,矩形ABCDAB=2cm,BC=10cm,点C和点M重合,点B、C(M)、N在同一直线上,令RtPMN不动,矩形ABCD沿MN所在直线以每秒1cm的速度向右移动,至点C与点N重合为止,设移动x秒后,矩形ABCDPMN重叠部分的面积为y,则yx的大致图象是(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知矩形中,边上的一个动点,点分别是的中点.

1)求证:

2)当的中点时,四边形是什么样的特殊四边形?请证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】伊利集团是中国规模最大、产品线最全的乳制品企业.综合实践小组的同学从网上搜集到如下一些伊利集团近几年的营业状况的资料,其中图120132018年伊利集团营业收入及净利润情况统计图,图22018年伊利集团各品类业务营收比例情况统计图(数据来源:公司财报、中商产业研究院)

(1)解读信息:

综合实践小组的同学结合统计图提出了如下问题,请你解答:

①2018年,伊利集团营收及净利再次刷新行业纪录,稳居亚洲乳业第一.这一年,伊利集团实现营业收人   亿元,净利润   亿元;

2018年伊利集团“奶粉及奶制品“业务的营业收入(结果保留整数)

201320186年中;伊利集团净利润比上一年增长额最多的是   年;估计2019年伊利集团的净利润将比上一年增长   亿元,理由是   

(2)拓展活动:

如图,同学们收集了伊利集团旗下“优酸乳、谷粒多、QQ星,安幕希”四种产品的商标图片(四张图片除商标图案外完全相同,分别记为ABCD)(见图3).同学们用这四张卡片设计了一个游戏,规则是:将四张图片背面朝上放在桌上,搅匀后,由甲从中随机抽取一张,记下商标名称后放回;再次搅匀后,由乙从中随机抽取一张.若两人抽到的商标相同则甲获胜;否则,乙获胜,这个规则对甲乙双方公平吗?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在课外实践中,小明为了测量江中信号塔离河边的距离,采取了如下措施:如图在江边处,测得信号塔的俯角为,若米,米,平行于的坡度为,坡长米,则的长为(  )(精确到0.1米,参考数据:

A.78.6B.78.7C.78.8D.78.9

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,ABAC,∠BAC60°,DBC边上一点(不与点BC重合),将线段AD绕点A逆时针旋转60°得到AE,连接EC,则:

1ACE的度数是    线段ACCDCE之间的数量关系是   

2)如图,在△ABC中,ABAC,∠BAC90°,DBC边上一点(不与点BC重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,请判断线段ACCDCE之间的数量关系,并说明理由;

3)如图ACDE交于点F,在(2)条件下,若AC8,求AF的最小值.

查看答案和解析>>

同步练习册答案