精英家教网 > 初中数学 > 题目详情

【题目】在课外实践中,小明为了测量江中信号塔离河边的距离,采取了如下措施:如图在江边处,测得信号塔的俯角为,若米,米,平行于的坡度为,坡长米,则的长为(  )(精确到0.1米,参考数据:

A.78.6B.78.7C.78.8D.78.9

【答案】C

【解析】

如下图,先在Rt△CBF中求得BF、CF的长,再利用Rt△ADG求AG的长,进而得到AB的长度

如下图,过点CAB的垂线,交AB延长线于点F,延长DEAB延长线于点G

BC的坡度为1:0.75

∴设CFxm,则BF0.75xm

BC=140m

∴在Rt△BCF中,,解得:x=112

∴CF=112m,BF=84m

∵DE⊥CE,CE∥AB,∴DG⊥AB,∴△ADG是直角三角形

∵DE=55m,CE=FG=36m

∴DG=167m,BG=120m

设AB=ym

∵∠DAB=40°

∴tan40°=

解得:y=78.8

故选:C

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在中,,点边上一点,且.点从点出发.沿射线以每秒1个单位长度的速度运动.以为邻边作.设重叠部分图形的面积为(平方单位),点的运动时间为(秒)

1)连结,求的长.

2)当为菱形时,求的值.

3)求之间的函数关系式.

4)将线段沿直线翻折得到线段.当点落在的边上时,直接写出的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,BA=BC,以AB为直径的⊙O分别交ACBC于点DEBC的延长线与⊙O的切线AF交于点F

(1)求证:∠ABC=2CAF

(2)若AC=2CEEB=1:4,求CEAF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合与探究:

如图1的直角顶点在坐标原点,点轴正半轴上,点轴正半轴上,,将线段绕点顺时针旋转得到线段,过点轴于点,抛物线经过点,与轴交于点,直线轴交于点

1)求点的坐标及抛物线的表达式;

2)如图2,已知点是线段上的一个动点,过点的垂线交抛物线于点(点在第一象限),设点的横坐标为

①点的纵坐标用含的代数式表示为________

②如图3,当直线经过点时,求点的坐标,判断四边形的形状并证明结论;

③在②的前提下,连接,点是坐标平面内的点,若以为顶点的三角形与全等,请直接写出点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图4所示,在△ABC中,∠C=90°,AC=6cm,BC=8cm,点P从点A出发沿边AC向点C以1cm/s的速度移动,点Q从C点出发沿CB边向点B以2cm/s的速度移动.

(1)、如果P、Q同时出发,几秒钟后,可使△PCQ的面积为8平方厘米?

(2)、点P、Q在移动过程中,是否存在某一时刻,使得△PCQ的面积等于△ABC的面积的一半.若存在,求出运动的时间;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了增强学生对新冠病毒预防知识的了解,我校初一年级开展了网上预防知识的宣传教育活动.为了解这次宣传教育活动的效果,学校从初一年级1500名学生中随机抽取部分学生进行网上知识测试(测试满分100分,得分均为整数),并根据抽取的学生测试成绩,制作了如下统计图表:

抽取学生知识测试成绩的频数表

成绩(分)

频数(人)

频率

10

0.1

15

0.2

40

由图表中给出的信息回答下列问题:

1        ,并补全频数直方图;

2)如果80分以上(包括80分)为优秀,请估计初一年级1500名学生中成绩优秀的人数;

3)小强在这次测试中成绩为85分,你认为85分一定是这100名学生知识测试成绩的中位数吗?请简要说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2021年我省开始实施“ 3+1+2”高考新方案,其中语文、数学、外语三门为统考科目( 必考), 物理和历史两个科目中任选 1门,另外在思想政治、地理、化学、生物四门科目中任选 2门,共计6门科目,总分750 分, 假设小丽在选择科目时不考虑主观性.

1)小丽选到物理的概率为

2)请用“画树状图”或“列表”的方法分析小丽在思想政治、 地理、 化学、生物四门科目中任选 2门选到化学、生物的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知, 成正比例, 成反比例,并且当时, ,当时,

)求关于的函数关系式.

)当时,求的值.

【答案】;(

【解析】分析:(1)首先根据x成正比例, x成反比例,且当x=1时,y=4;当x=2时,y=5,求出 x的关系式,进而求出yx的关系式,(2)根据(1)问求出的yx之间的关系式,令y=0,即可求出x的值.

本题解析:

)设

∵当时, ,当时,

解得,

关于的函数关系式为

)把代入得,

解得:

点睛:本题考查了用待定系数法求反比例函数的解析式:(1)设出含有待定系数的反比例函数解析式y=kx(k为常数,k≠0);(2)把已知条件(自变量与对应值)代入解析式,得到待定系数的方程;(3)解方程,求出待定系数;(4)写出解析式.

型】解答
束】
24

【题目】如图,菱形的对角线相交于点,过点,连接,连接于点.

(1)求证:;

(2)若菱形的边长为2, .求的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等腰上一点,以为斜边作等腰,连接,若,则的长为________________

查看答案和解析>>

同步练习册答案