【题目】如图,直线l1∥l2 , l1和AB的夹角∠DAB=135°,且AB=50mm,求两平行线l1和l2之间的距离.
【答案】解:如图,过点A作AC⊥l2于点C,
∵直线l1∥l2 , AC⊥l2 ,
∴∠DAC=90°,
∵∠DAB=135°,
∴∠BAC=∠DAB﹣∠DAC=45°,
∴∠ABC=45°,
∴∠BAC=∠ABC,
∴AC=BC,
在Rt△ABC中,AC2+BC2=AB2 ,
2AC2=502 ,
∴AC=25
∴两平行线l1和l2之间的距离为25.
【解析】过点A作AC⊥l2于点C,证明∠BAC=∠ABC,所以AC=BC,在Rt△ABC中,AC2+BC2=AB2 , 即可解答.
【考点精析】解答此题的关键在于理解平行线之间的距离的相关知识,掌握两条平行线的距离:两条直线平行,从一条直线上的任意一点向另一条直线引垂线,垂线段的长度,叫做两条平行线的距离.
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0)和B(3,0)两点,与y轴交于点C,对称轴与x轴交于点E,点D为顶点,连接BD、CD、BC.
(1)求证△BCD是直角三角形;
(2)点P为线段BD上一点,若∠PCO+∠CDB=180°,求点P的坐标;
(3)点M为抛物线上一点,作MN⊥CD,交直线CD于点N,若∠CMN=∠BDE,请直接写出所有符合条件的点M的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如下图,有一池塘,要测池塘两端A、B的距离,可先在平地上取一个可以直接到达A和B的点C , 连结AC并延长到D , 使CD=CA , 连结BC并延长到E , 使CE=CB , 连结DE , A、B的距离为( )
A.线段AC的长度
B.线段BC的长度
C.线段DE长度
D.无法判断
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】今年我市某公司分两次采购了一批大蒜,第一次花费40万元,第二次花费60万元,已知第一次采购时每吨大蒜的价格比去年的平均价格上涨了500元,第二次采购时每吨大蒜的价格比去年的平均价格下降了500元,第二次采购的数量是第一次采购数量的两倍.
(1)试问去年每吨大蒜的平均价格是多少元?
(2)该公司可将大蒜加工成蒜粉或蒜片,若单独加工成蒜粉,每天可加工8吨大蒜,每吨大蒜获利1000元;若单独加工成蒜片,每天可加工12吨大蒜,每吨大蒜获利600元.为出口需要,所有采购的大蒜必须在30天内加工完毕,且加工蒜粉的大蒜数量不少于加工蒜片的大蒜数量的一半.为获得最大利润,应将多少吨大蒜加工成蒜粉?最大利润为多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=﹣x2+1的图象与x轴交于A、B两点,与y轴交于点C,下列说法错误的是( ).
A. 点C的坐标是(0,1) B. 线段AB的长为2
C. △ABC是等腰直角三角形 D. 当x>0时,y随x增大而增大
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com