精英家教网 > 初中数学 > 题目详情

【题目】P为等边ABC内一点,∠APB=112°,如果把ABP绕点A旋转,使点B与点C重合,此时点P落在点P'处,那么∠P P'C=____________

【答案】52°

【解析】

根据△APB≌△AP'C,则∠AP'C=APB=112°,且AP′=AP,∠BAP=CAP′,可证明△PAP'是等边三角形,从而得出∠PP'C的度数.

∵△APB≌△AP'C


∴∠AP'C=APB=112°,且AP′=AP,∠BAP=CAP′
又∠BAP+PAC=60°
∴∠CAP'+PAC=60°
即∠PAP'=60°
∴△PAP'是等边三角形.
∴∠PP'C=AP'C-AP'P=112°-60°=52°
故答案为:52°

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,一个商人要建一个矩形的仓库,仓库的两边是住房墙,另外两边用长的建筑材料围成,且仓库的面积为

求这矩形仓库的长;

有规格为(单位:)的地板砖单价分别为/块和/块,若只选其中一种地板砖都恰好能铺满仓库的矩形地面(不计缝隙),用哪一种规格的地板砖费用较少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC的面积为3BDDC21EAC的中点,ADBE相交于点P,那么四边形PDCE的面积为(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某地2015年为做好精准扶贫,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2017年在2015年的基础上增加投入资金1600万元.

(1)从2015年到2017年,该地投入异地安置资金的年平均增长率为多少?

(2)在2017年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天奖励5元,按租房400天计算,求2017年该地至少有多少户享受到优先搬迁租房奖励.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】用图1中四个完全一样的直角三角形可以拼成图2的大正方形。

解答下列问题:

1)请用含的代数式表示大正方形的面积.

方法1 ;方法2 .

2)根据图2,利用图形的面积关系,推导之间满足的关系式.

3)利用(2)的关系式解答:如果大正方形的面积是25,且,求小正方形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知反比例函数y=与一次函数y=x+b的图象交于A(1,-k+4),B(k-4,-1)两点.

(1)试确定这两个函数的表达式;

(2)根据图象写出使反比例函数的值大于一次函数的值的x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知△ABN△ACM位置如图所示,AB=ACAD=AE∠1=∠2

1)求证:BD=CE

2)求证:∠M=∠N

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两车从A地匀速驶向B地,甲车比乙车早出发2小时,并且甲车图中休息了0.5小时后仍以原速度驶向B地,如图是甲、乙两车行驶的路程y(千米)与行驶的时间x(小时)之间的函数图象.下列说法:

m1a40

②甲车的速度是40千米/小时,乙车的速度是80千米/小时;

③当甲车距离A260千米时,甲车所用的时间为7小时;

④当两车相距20千米时,则乙车行驶了34小时,

其中正确的个数是(  )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】的顶点的两条直线分三角形边上的中线所成的比,则这两条直线分边所成的比为(

A. 4:5:3 B. 3:4:2 C. 2:3:1 D. 1:1:1

查看答案和解析>>

同步练习册答案