【题目】一艘轮船沿正北方向航行,在A处测得北偏东21.3°方向有一座小岛C,继续向北航行60海里到达B处,测得小岛C此时在轮船的北偏东63.5°方向上.之后,轮船继续向北航行多少海里,距离小岛C最近?
(参考数据:sin21.3°≈,tan21.3°≈,sin63.5°≈,tan63.5°≈2)
【答案】轮船继续向北航行15海里,距离小岛C最近.
【解析】
过C作CD⊥AB于D,得到Rt△ACD与Rt△BCD,在直角△BCD中,即可利用BD表示出CD的长,再在直角△ACD中,利用三角函数即可求解.
过C作CD⊥AB于D,得到Rt△ACD与Rt△BCD.
设BD=x海里,在直角△BCD中,CD=BDtan∠CBD=xtan63.5°.
在直角△ACD中,AD=AB+BD=(60+x)海里,
tan∠A=,∴CD=(60+x)tan21.3°,
∴xtan63.5°=(60+x)tan21.3°,
即2x=(60+x),解得:x=15.
答:轮船继续向北航行15海里,距离小岛C最近.
科目:初中数学 来源: 题型:
【题目】如图,三个顶点的坐标分别为、、.
(1)若与关于y轴成轴对称,则三个顶点坐标分别为_________,____________,____________;
(2)若P为x轴上一点,则的最小值为____________;
(3)计算的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,是的直径,点在上,,垂足为,弧等于弧,分别交、于点、.
判断的形状,并说明理由;
若点和点在的两侧,、的延长线交于点,的延长线交于点,其余条件不变,中的结论还成立吗?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在平面直角坐标系中,△ABC是⊙O的内接三角形,AB=AC,点P是 的中点,连结PA,PB,PC.
(1)如图(a),若∠BPC=60°,求证:AC=AP;
(2)如图(b),若sin∠BPC=,求tan∠PAB的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知△ ABC 的三个顶点的坐标分别为 A(-3,5),B(-2,1).
(1)请在如图所示的网格内画出平面直角坐标系,并写出 C 点坐标;
(2)先将△ABC 沿 x 轴翻折,再沿 x 轴向右平移 4 个单位长度后得到△A1B1C1,请 在网格内画出△A1B1C1;
(3)在(2)的条件下,△ABC 的边 AC 上一点 M(a,b)的对应点 M1 的坐标是 .(友情提醒:画图结果确定后请用黑色签字笔加黑)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC中,∠ABC=90°.
(1)尺规作图:按下列要求完成作图(保留作图痕迹,请标明字母)
①作线段AC的垂直平分线l,交AC于点O;
②连接BO并延长,在BO的延长线上截取OD,使得OD=OB;
③连接DA、DC.
(2)判断四边形ABCD的形状,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数图象的顶点在原点,对称轴为轴.一次函数的图象与二次函数的图象交于,两点(在的左侧),且点坐标为.平行于轴的直线过点.
求一次函数与二次函数的解析式;
判断以线段为直径的圆与直线的位置关系,并给出证明;
把二次函数的图象向右平移个单位,再向下平移个单位,二次函数的图象与轴交于,两点,一次函数图象交轴于点.当为何值时,过,,三点的圆的面积最小?最小面积是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com