分析 (1)已知抛物线的顶点坐标,则可设顶点式y=a(x-2)2-4,然后把(1,0)代入求出a即可;
(2)利用二次函数的性质求解.
解答 解:(1)设抛物线的解析式为y=a(x-2)2-4,
把(1,0)代入得a•(1-2)2-4=0,解得a=4,
所以抛物线的解析式为y=4(x-2)2-4;
(2)当x>2时,y随x的增大而增大.
点评 本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | x2+9=(x+3)2 | B. | a2+2a+4=(a+2)2 | C. | a3-4a2=a2(a-4) | D. | 1-4x2=(1+4x)(1-4) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com