精英家教网 > 初中数学 > 题目详情

【题目】已知抛物线y=ax2+bx+c经过点A(0,3)、B(4,3)、C(1,0)、
(1)填空:抛物线的对称轴为直线x= , 抛物线与x轴的另一个交点D的坐标为
(2)求该抛物线的解析式.

【答案】
(1)2;(3,0)
(2)解:∵拋物线经过点C(1,0)、D(3,0),

∴设拋物线的解析式为y=a(x﹣1)(x﹣3)

由拋物线经过点A(0,3),得a=1

∴拋物线的解析式为y=x2﹣4x+3


【解析】解:(1)拋物线的对称轴为直线x=2;
拋物线与x轴的另一个交点D的坐标为(3,0);
【考点精析】通过灵活运用二次函数的性质,掌握增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小即可以解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,若BC=ECBCE=ACD,则添加不能使ABC≌△DBC的条件是(

AAB=DE BB=E CAC=DC DA=D

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将在Rt△ABC绕其锐角顶点A旋转90°得到在Rt△ADE,连接BE,延长DE、BC相交于点F,则有∠BFE=90°,且四边形ACFD是一个正方形.

(1)判断△ABE的形状,并证明你的结论;

(2)用含b代数式表示四边形ABFE的面积;

(3)求证:a2+b2=c2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市某县政府为了迎接八一建军节,加强军民共建活动,计划从花园里拿出1430盆甲种花卉和1220盆乙种花卉,搭配成A、B两种园艺造型共20个,在城区内摆放,以增加节日气氛,已知搭配A、B两种园艺造型各需甲、乙两种花卉数如表所示:(单位:盆)

(1)某校某年级一班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮忙设计出来.

(2)如果搭配及摆放一个A造型需要的人力是8人次,搭配及摆放一个B造型需要的人力是11人次,哪种方案使用人力的总人次数最少,请说明理由.

造型数量花

A

B

甲种

80

50

乙种

40

90

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】纸箱厂用如图1所示的长方形和正方形纸板,做成如图2所示的竖式与横式两种长方体形状的有底无盖纸盒.

1)现有正方形纸板172张,长方形纸板330张.若要做两种纸盒共l00个,设做竖式纸盒x个.

根据题意,完成以下表格:

纸盒
纸板

竖式纸盒()

横式纸盒()

x


正方形纸板()


2(100-x)

长方形纸板()

4x


按两种纸盒的数量分,有哪几种生产方案?

2)若有正方形纸板112张,长方形纸板张,做成上述两种纸盒,纸板恰好用完.已知100<<110,则的值是 .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解一元二次不等式

请按照下面的步骤,完成本题的解答.

解: 可化为

(1)依据两数相乘,同号得正,可得不等式组① 或不等式组②________

(2)解不等式组①,得________

(3)解不等式组②,得________

(4)一元二次不等式 的解集为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠B=60°∠C=20°AD△ABC的高,AE为角平分线.求∠EAD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=﹣x2+bx+c与x轴交于点A(1,0),B(3,0),与y轴交于点C.
(1)求抛物线的解析式;
(2)设点P在该抛物线上滑动,则满足SPAB=1的点P有几个?求出所有点P的坐标;
(3)在该抛物线的对称轴上存在点M,使得△MAC的周长最小,求出这个点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数y=ax2+bx+c的图象与x轴交于(﹣2,0)和(4,0)两点,当函数值y>0时,自变量x的取值范围是(
A.x<﹣2
B.x>4
C.﹣2<x<4
D.x>0

查看答案和解析>>

同步练习册答案