精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,∠B=60°∠C=20°AD△ABC的高,AE为角平分线.求∠EAD的度数.

【答案】20°.

【解析】

试题此题主要考查了三角形的内角和定理,要熟练掌握,解答此题的关键是要明确:三角形的内角和是180°.此题还考查了三角形的外角的性质和应用,要熟练掌握,解答此题的关键是要明确:三角形的外角和为360°三角形的一个外角等于和它不相邻的两个内角的和.三角形的一个外角大于和它不相邻的任何一个内角.首先根据三角形的内角和定理,求出∠BAC的度数是多少;然后根据AE为角平分线,求出∠BAE的度数是多少;最后在Rt△ABD中,求出∠BAD的度数,即可求出∠EAD的度数是多少.

试题解析:∵∠B=60°∠C=20°∴∠BAC=180°﹣60°﹣20°=100°

∵AE为角平分线, ∴∠BAE=100°÷2=50°∵AD△ABC的高, ∴∠ADB=90°

∴∠BAD=90°﹣60°=30°∴∠EAD=∠BAE﹣∠BAD=50°﹣30°=20°

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为了估算河的宽度,我们可以在河对岸选定一个目标作为点A,再在河的这一边选定点B和C,使AB⊥BC,然后,再选点E,使EC⊥BC,用视线确定BC和AE的交点D.此时如果测得BD=120米,DC=60米,EC=50米,求两岸间的大致距离AB.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】是否存在整数m,使关于x的不等式1++与关于x的不等式x+1> 的解集相同?若存在,求出整数m和不等式的解集;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=ax2+bx+c经过点A(0,3)、B(4,3)、C(1,0)、
(1)填空:抛物线的对称轴为直线x= , 抛物线与x轴的另一个交点D的坐标为
(2)求该抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直角坐标系中,ABC的顶点都在网格点上,其中,C点坐标为(1,2)

(1)写出点A、B的坐标:A(     )、B(      

(2)将ABC先向左平移1个单位长度,再向上平移2个单位长度,得到A′B′C′,画出A′B′C′

(3)写出三个顶点坐标A′(      )、B′(       )、C′ (       

(4)求ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠ACB=90°,∠B=30°,将△ABC绕点C按顺时针方向旋转n度后,得到△DEC,点D刚好落在AB边上.
(1)求n的值;
(2)若F是DE的中点,判断四边形ACFD的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC 中,AB=AC,CD是∠ACB的平分线,DE∥BC,交AC于点 E.

(1)求证:DE=CE.

(2)若∠CDE=35°,求∠A 的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O△ABC的三条边所得的弦长相等,则下列说法正确的是(
A.点O是△ABC的内心
B.点O是△ABC的外心
C.△ABC是正三角形
D.△ABC是等腰三角形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)观察推理:如图 1,△ABC 中,∠ACB=90°,AC=BC,直线 L 过点C,点 A,B 在直线 L 同侧,BD⊥L, AE⊥L,垂足分别为D,E

求证:△AEC≌△CDB

(2)类比探究:如图 2,RtABC 中,∠ACB=90°,AC=4,将斜边 AB 绕点 A 逆时针旋转 90° AB’, 连接B’C,求AB’C 的面积

(3)拓展提升:如图 3,等边EBC ,EC=BC=3cm,点 O BC 上且 OC=2cm,动点 P 从点 E 沿射线EC 1cm/s 速度运动,连接 OP,将线段 OP 绕点O 逆时针旋转 120°得到线段 OF,设点 P 运动的时间为t 秒。

t= 时,OF∥ED

若要使点F 恰好落在射线EB 上,求点P 运动的时间t

查看答案和解析>>

同步练习册答案