【题目】已知:如图,AB为⊙O的直径,点C、D在⊙O上,且BC=6cm,AC=8cm,∠ABD=45°.
(1)求BD的长;
(2)求图中阴影部分的面积.
科目:初中数学 来源: 题型:
【题目】如图,正方形AOCB的边长为4,反比例函数的图象过点E(3,4).
(1)求反比例函数的解析式;
(2)反比例函数的图象与线段BC交于点D,直线过点D,与线段AB相交于点F,求点F的坐标;
(3)连接OF,OE,探究∠AOF与∠EOC的数量关系,并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】
(1) 填空:AB=_________,BC= ;
(2) 若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒3个单位长度和7个单位长度的速度向右运动.设运动时间为t秒,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB,用含t的代数式表示BC和AB的长,并探索:BC-AB的值是否随着时间t的变化而改变?请说明理由
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在直角坐标系中,已知P(a, b)是△ABC的边AC上一点,△ABC经平移后P点的对应点P1(a+3,b-1),则下列平移过程正确的是( )
A. 先向左平移3个单位,再向下平移1个单位 B. 先向右平移3个单位,再向下平移1个单位
C. 先向左平移3个单位,再向上平移1个单位 D. 先向右平移3个单位,再向上平移1个单位
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】黄石市2011年6月份某日一天的温差为11℃,最高气温为t℃,则最低气温可表示为( )
A. (11+t)℃ B. (11﹣t)℃ C. (t﹣11)℃ D. (﹣t﹣11)℃
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题提出:用n根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?
问题探究:不妨假设能搭成种不同的等腰三角形,为探究之间的关系,我们可以从特殊入手,通过试验、观察、类比,最后归纳、猜测得出结论.
探究一:
(1)用3根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?
此时,显然能搭成一种等腰三角形。所以,当时,
(2)用4根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?
只可分成1根木棒、1根木棒和2根木棒这一种情况,不能搭成三角形
所以,当时,
(3)用5根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?
若分成1根木棒、1根木棒和3根木棒,则不能搭成三角形
若分为2根木棒、2根木棒和1根木棒,则能搭成一种等腰三角形
所以,当时,
(4)用6根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?
若分成1根木棒、1根木棒和4根木棒,则不能搭成三角形
若分为2根木棒、2根木棒和2根木棒,则能搭成一种等腰三角形
所以,当时,
综上所述,可得表①
3 | 4] | 5 | 6 | |
1 | 0 | 1 | 1 |
探究二:
(1)用7根相同的木棒搭成一个三角形,能搭成多少种不同的等腰三角形?
(仿照上述探究方法,写出解答过程,并把结果填在表②中)
(2)分别用8根、9根、10根相同的木棒搭成一个三角形,能搭成多少种不同的等腰三
角形?(只需把结果填在表②中)
7 | 8 | 9 | 10 | |
你不妨分别用11根、12根、13根、14根相同的木棒继续进行探究,……
解决问题:用根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?
(设分别等于、、、,其中是整数,把结果填在表③中)
问题应用:用2016根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?(要求写出解答过程)其中面积最大的等腰三角形每个腰用了__________________根木棒。(只填结果)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com