精英家教网 > 初中数学 > 题目详情

【题目】如图,在直角中,已知边的垂直平分线交于点,交于点,且,则的长是________

【答案】8

【解析】

根据直角三角形两锐角互余求得∠B的度数,利用线段垂直平分线的性质得AD=BD,利用等腰三角形的性质得∠DAE=B=15°,再利用外角的性质得∠ADC=30°,在三角形ADC中求出AD的长即可求得答案.

∵∠C=90°,∠BAC=75°

∴∠B=90°-75°=15°

AB边的垂直平分线交ABE,交BCD,,

AD=BD

∴∠DAE=B=15°,

∴∠ADC=DAB+B=30°

AC=AD

RtADC中,∠C=90°,由勾股定理得AD2=AC2+CD2

AD2=(AD)2+()2

解得:AD=8

BD=8

故答案为:8.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,为坐标原点,矩形的顶点,将矩形的一个角沿直线折叠,使得点落在对角线上的点处,折痕与轴交于点.

1)线段的长度为__________

2)求直线所对应的函数解析式;

3)若点在线段上,在线段上是否存在点,使四边形是平行四边形?若存在,请求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列材料,完成任务:

自相似图形

定义:若某个图形可分割为若干个都与它相似的图形,则称这个图形是自相似图形.例如:正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边的中点,连接EG,HF交于点O,易知分割成的四个四边形AEOH、EBFO、OFCG、HOGD均为正方形,且与原正方形相似,故正方形是自相似图形.

任务:

(1)图1中正方形ABCD分割成的四个小正方形中,每个正方形与原正方形的相似比为   

(2)如图2,已知ABC中,ACB=90°,AC=4,BC=3,小明发现ABC也是“自相似图形”,他的思路是:过点C作CDAB于点D,则CD将ABC分割成2个与它自己相似的小直角三角形.已知△ACD∽△ABC,则ACD与ABC的相似比为   

(3)现有一个矩形ABCD是自相似图形,其中长AD=a,宽AB=b(a>b).

请从下列A、B两题中任选一条作答:我选择   题.

A:①如图3﹣1,若将矩形ABCD纵向分割成两个全等矩形,且与原矩形都相似,则a=   (用含b的式子表示);

如图3﹣2若将矩形ABCD纵向分割成n个全等矩形,且与原矩形都相似,则a=   (用含n,b的式子表示);

B:①如图4﹣1,若将矩形ABCD先纵向分割出2个全等矩形,再将剩余的部分横向分割成3个全等矩形,且分割得到的矩形与原矩形都相似,则a=   (用含b的式子表示);

如图4﹣2,若将矩形ABCD先纵向分割出m个全等矩形,再将剩余的部分横向分割成n个全等矩形,且分割得到的矩形与原矩形都相似,则a=   (用含m,n,b的式子表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】武汉某文化旅游公司为了在军运会期间更好地宣传武汉,在工厂定制了一批具有浓郁的武汉特色的商品.为了了解市场情况,该公司向市场投放型商品共件进行试销,型商品成本价/件,商品成本价/件,其中型商品的件数不大于型的件数,且不小于件,已知型商品的售价为元/件,型商品的售价为元/件,且全部售出.设投放型商品件,该公司销售这批商品的利润元.

1)直接写出之间的函数关系式:_______

2)为了使这批商品的利润最大,该公司应该向市场投放多少件型商品?最大利润是多少?

3)该公司决定在试销活动中每售出一件型商品,就从一件型商品的利润中捐献慈善资金元,当该公司售完这件商品并捐献资金后获得的最大收益为元时,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知等边△ABC的边长为DAB上的动点,过DDEAC于点E,过EEFBC于点F,过FFGAB于点G.当GD重合时,AD的长是(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在同一平面内有四个点ABCD

1)请按要求作出图形(注:此题作图不需要写出画法和结论);

作射线AC

作直线BD,交射线AC相于点O

分别连接ABAD

求作一条线段MN,使其等于ACAB(用尺规作图,保留作图痕迹).

2)观察BD两点间的连线,我们容易判断出线段AB+ADBD,理由是   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中,垂直平分,分别交于点垂直平分,分别交于点

⑴如图①,若,求的度数;

⑵如图②,若,求的度数;

⑶若,直接写出用表示大小的代数式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知∠1=∠2DEBCABBC,求证:∠A=∠3.

证明:∵ DEBCABBC(已知)

∴∠DEC=ABC=90°( )

DEAB_________ ___

∴∠2=____ (__________ ___________)

1 (____________ _________)

又∵∠1=∠2(_____________________)

∴∠A=∠3(_____________________)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB=6cm,BC=8cm.如果点E由点B出发沿BC方向向点C匀速运动,同时点F由点D出发沿DA方向向点A匀速运动,它们的速度分别为2cm/s和1cm/s.FQ⊥BC,分别交AC、BC于点P和Q,设运动时间为t(s)(0<t<4).

(1)连结EF、DQ,若四边形EQDF为平行四边形,求t的值;

(2)连结EP,设△EPC的面积为ycm2,求y与t的函数关系式,并求y的最大值;

(3)若△EPQ与△ADC相似,请直接写出t的值.

查看答案和解析>>

同步练习册答案