【题目】阅读下列材料,完成任务:
自相似图形
定义:若某个图形可分割为若干个都与它相似的图形,则称这个图形是自相似图形.例如:正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边的中点,连接EG,HF交于点O,易知分割成的四个四边形AEOH、EBFO、OFCG、HOGD均为正方形,且与原正方形相似,故正方形是自相似图形.
任务:
(1)图1中正方形ABCD分割成的四个小正方形中,每个正方形与原正方形的相似比为 ;
(2)如图2,已知△ABC中,∠ACB=90°,AC=4,BC=3,小明发现△ABC也是“自相似图形”,他的思路是:过点C作CD⊥AB于点D,则CD将△ABC分割成2个与它自己相似的小直角三角形.已知△ACD∽△ABC,则△ACD与△ABC的相似比为 ;
(3)现有一个矩形ABCD是自相似图形,其中长AD=a,宽AB=b(a>b).
请从下列A、B两题中任选一条作答:我选择 题.
A:①如图3﹣1,若将矩形ABCD纵向分割成两个全等矩形,且与原矩形都相似,则a= (用含b的式子表示);
②如图3﹣2若将矩形ABCD纵向分割成n个全等矩形,且与原矩形都相似,则a= (用含n,b的式子表示);
B:①如图4﹣1,若将矩形ABCD先纵向分割出2个全等矩形,再将剩余的部分横向分割成3个全等矩形,且分割得到的矩形与原矩形都相似,则a= (用含b的式子表示);
②如图4﹣2,若将矩形ABCD先纵向分割出m个全等矩形,再将剩余的部分横向分割成n个全等矩形,且分割得到的矩形与原矩形都相似,则a= (用含m,n,b的式子表示).
【答案】(1);(2);(3)A、①;② ;B、①或;②或.
【解析】试题分析:(1)根据相似比的定义求解即可;(2)由勾股定理求得AB=5,根据相似比等于可求得答案;(3)A.①由矩形ABEF∽矩形FECD,列出比例式整理可得;②由每个小矩形都是全等的,可得其边长为b和a,列出比例式整理即可;B.①分当FM是矩形DFMN的长时和当DF是矩形DFMN的长时两种情况,根据相似多边形的性质列比例式求解;②由题意可知纵向2块矩形全等,横向3块矩形也全等,所以DN=b,然后分当FM是矩形DFMN的长时和当DF是矩形DFMN的长时两种情况,根据相似多边形的性质列比例式求解.
解:(1)∵点H是AD的中点,
∴AH=AD,
∵正方形AEOH∽正方形ABCD,
∴相似比为: ==;
故答案为:;
(2)在Rt△ABC中,AC=4,BC=3,根据勾股定理得,AB=5,
∴△ACD与△ABC相似的相似比为: =,
故答案为:;
(3)A、①∵矩形ABEF∽矩形FECD,
∴AF:AB=AB:AD,
即a:b=b:a,
∴a=b;
故答案为:
②每个小矩形都是全等的,则其边长为b和a,
则b: a=a:b,
∴a=b;
故答案为:
B、①如图2,
由①②可知纵向2块矩形全等,横向3块矩形也全等,
∴DN=b,
Ⅰ、当FM是矩形DFMN的长时,
∵矩形FMND∽矩形ABCD,
∴FD:DN=AD:AB,
即FD: b=a:b,
解得FD=a,
∴AF=a﹣a=a,
∴AG===a,
∵矩形GABH∽矩形ABCD,
∴AG:AB=AB:AD
即a:b=b:a
得:a=b;
Ⅱ、当DF是矩形DFMN的长时,
∵矩形DFMN∽矩形ABCD,
∴FD:DN=AB:AD
即FD: b=b:a
解得FD=,
∴AF=a﹣=,
∴AG==,
∵矩形GABH∽矩形ABCD,
∴AG:AB=AB:AD
即:b=b:a,
得:a=b;
故答案为:或;
②如图3,
由①②可知纵向m块矩形全等,横向n块矩形也全等,
∴DN=b,
Ⅰ、当FM是矩形DFMN的长时,
∵矩形FMND∽矩形ABCD,
∴FD:DN=AD:AB,
即FD: b=a:b,
解得FD=a,
∴AF=a﹣a,
∴AG===a,
∵矩形GABH∽矩形ABCD,
∴AG:AB=AB:AD
即a:b=b:a
得:a=b;
Ⅱ、当DF是矩形DFMN的长时,
∵矩形DFMN∽矩形ABCD,
∴FD:DN=AB:AD
即FD: b=b:a
解得FD=,
∴AF=a﹣,
∴AG==,
∵矩形GABH∽矩形ABCD,
∴AG:AB=AB:AD
即:b=b:a,
得:a=b;
故答案为: b或b.
科目:初中数学 来源: 题型:
【题目】4月23日是“世界读书日”,某校文学社团随机调查了部分学生,就“你最喜欢的图书类别”(只选一项)对学生课外阅读的情况作了调查统计,将调查结果统计后绘制成如下统计表和条形统计图.请根据统计图表提供的信息解答下列问题:
初中生课外阅读情况调查统计表
种类 | 频数 | 频率 |
卡通画 | a | 0.56 |
时文杂志 | 32 | b |
武侠小说 | c | 0.15 |
文学名著 | 26 | d |
(1)这次随机调查了几名学生?统计表中a,d各代表什么数值?
(2)试估计该校1500名学生中有多少名同学最喜欢文学名著类书籍?
(3)结合以上统计数据,请你站在文学社团的立场发表一下你的看法.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=kx+b的图象经过点A(8,0),直线y=-3x+6与x轴交于点B,与y轴交于点D,且两直线交于点C(4,m).
(1)求m的值及一次函数的解析式;
(2)求△ACD的面积。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图,在△ABC中,∠B<∠C,AD,AE分别是△ABC的高和角平分线,
(1)若∠B=30°,∠C=50°.则∠DAE的度数是 .(直接写出答案)
(2)写出∠DAE、∠B、∠C的数量关系: ,并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)一个两位正整数,a表示十位上的数字,b表示个位上的数字(a≠b,ab≠0),则这个两位数用多项式表示为 (含a、b的式子);若把十位、个位上的数字互换位置得到一个新两位数,则这两个两位数的和一定能被 整除,这两个两位数的差一定能被 整除.
(2)一个三位正整数F,各个数位上的数字互不相同且都不为0.若从它的百位、十位、个位上的数字中任意选择两个数字组成6个不同的两位数.若这6个两位数的和等于这个三位数本身,则称这样的三位数F为“友好数”,例如:132是“友好数”.
一个三位正整数P,各个数位上的数字互不相同且都不为0,若它的十位数字等于百位数字与个位数字的和,则称这样的三位数P为“和平数”;
①直接判断123是不是“友好数”?
②直接写出共有 个“和平数”;
③通过列方程的方法求出既是“和平数”又是“友好数”的数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形中,点同时从点出发,分别在,上运动,若点的运动速度是每秒2个单位长度,且是点运动速度的2倍,当其中一个点到达终点时,停止一切运动.以为对称轴作的对称图形.点恰好在上的时间为__秒.在整个运动过程中,与矩形重叠部分面积的最大值为________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某超市销售一种成本为40元千克的商品,若按50元千克销售,一个月可售出500千克,现打算涨价销售,据市场调查,涨价x元时,月销售量为m千克,m是x的一次函数,部分数据如下表:
观察表中数据,直接写出m与x的函数关系式:_______________:当涨价5元时,计算可得月销售利润是___________元;
当售价定多少元时,会获得月销售最大利润,求出最大利润.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).
(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是 .
(2)如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率.
(3)从概率的角度分析,你建议小明在第几题使用“求助”.(直接写出答案)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com