【题目】(1)一个两位正整数,a表示十位上的数字,b表示个位上的数字(a≠b,ab≠0),则这个两位数用多项式表示为 (含a、b的式子);若把十位、个位上的数字互换位置得到一个新两位数,则这两个两位数的和一定能被 整除,这两个两位数的差一定能被 整除.
(2)一个三位正整数F,各个数位上的数字互不相同且都不为0.若从它的百位、十位、个位上的数字中任意选择两个数字组成6个不同的两位数.若这6个两位数的和等于这个三位数本身,则称这样的三位数F为“友好数”,例如:132是“友好数”.
一个三位正整数P,各个数位上的数字互不相同且都不为0,若它的十位数字等于百位数字与个位数字的和,则称这样的三位数P为“和平数”;
①直接判断123是不是“友好数”?
②直接写出共有 个“和平数”;
③通过列方程的方法求出既是“和平数”又是“友好数”的数.
【答案】(1) 10a+b,11,9;(2) ①123不是“友好数”,理由见解析;②32;③既是“和平数”又是“友好数”的数是396,264,132.
【解析】
(1)分别求出两数的和与两数的差即可得到结论;
(2)①根据“友好数”的定义判断即可;
②根据“和平数”的定义列举出所有的“和平数”即可;
③设三位数既是“和平数”又是“友好数”,根据“和平数”的定义,得出y=x+z.再由“友好数”的定义,得出10x+y+10y+x+10x+z+10z+x+10y+z+10z+y=100x+10y+z,化简即为12y=78x﹣21z.把y=x+z代入,整理得出z=2x,然后从②的数字中挑选出符合要求的数即可.
(1)这个两位数用多项式表示为10a+b,
(10a+b)+(10b+a)=10a+b+10b+a=11a+11b=11(a+b),
∵11(a+b)÷11=a+b(整数),
∴这个两位数的和一定能被数11整除;
(10a+b)﹣(10b+a)=10a+b﹣10b﹣a=9a﹣9b=9(a﹣b),
∵9(a﹣b)÷9=a﹣b(整数),
∴这两个两位数的差一定能被数9整除,
故答案为:11,9;
(2)①123不是“友好数”.理由如下:
∵12+21+13+31+23+32=132≠123,
∴123不是“友好数”;
②十位数字是9的“和平数”有198,297,396,495,594,693,792,891,一个8个;
十位数字是8的“和平数”有187,286,385,584,682,781,一个6个;
十位数字是7的“和平数”有176,275,374,473,572,671,一个6个;
十位数字是6的“和平数”有165,264,462,561,一个4个;
十位数字是5的“和平数”有154,253,352,451,一个4个;
十位数字是4的“和平数”有143,341,一个2个;
十位数字是3的“和平数”有132,231,一个2个;
所以,“和平数”一共有8+(6+4+2)×2=32个.
故答案为32;
③设三位数既是“和平数”又是“友好数”,
∵三位数是“和平数”,
∴y=x+z.
∵是“友好数”,
∴10x+y+10y+x+10x+z+10z+x+10y+z+10z+y=100x+10y+z,
∴22x+22y+22z=100x+10y+z,
∴12y=78x﹣21z.
把y=x+z代入,得12x+12z=78x﹣21z,
∴33z=66x,
∴z=2x,
由②可知,既是“和平数”又是“友好数”的数是396,264,132.
科目:初中数学 来源: 题型:
【题目】三月底,某学校迎来了以“学海通识品墨韵,开卷有益览书山”为主题的学习节活动.为了让同学们更好的了解二十四节气的知识,本次学习节在沿袭以往经典项目的基础上,增设了“二十四节气之旅”项目,并开展了相关知识竞赛.该学校七、八年级各有400名学生参加了这次竞赛,现从七、八年级各随机抽取20名学生的成绩进行抽样调查.
收集数据如下:
七年级:
八年级:
整理数据如下:
分析数据如下:
根据以上信息,回答下列问题:
(1)a=______,b=______;
(2)你认为哪个年级知识竞赛的总体成绩较好,说明理由(至少从两个不同的角度说明推断的合理性);
(3)学校对知识竞赛成绩不低于80分的学生颁发优胜奖,请你估计学校七、八年级所有学生中获得优胜奖的大约有_____人.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】张老师元旦节期间到武商众圆商场购买一台某品牌笔记本电脑,恰逢商场正推出“迎元旦”促销打折活动,具体优惠情况如表:
购物总金额(原价) | 折扣 |
不超过5000元的部分 | 九折 |
超过5000元且不超过10000元的部分 | 八折 |
超过10000元且不超过20000元的部分 | 七折 |
…… | …… |
例如:若购买的商品原价为15000元,实际付款金额为:
5000×90%+(10000﹣5000)×80%+(15000﹣10000)×70%=12000元.
(1)若这种品牌电脑的原价为8000元/台,请求出张老师实际付款金额;
(2)已知张老师购买一台该品牌电脑实际付费5700元.
①求该品牌电脑的原价是多少元/台?
②若售出这台电脑商场仍可获利14%,求这种品牌电脑的进价为多少元/台?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=kx2+(k﹣2)x﹣2(其中k>0).
(1)求该抛物线与x轴的交点及顶点的坐标(可以用含k的代数式表示);
(2)若记该抛物线顶点的坐标为P(m,n),直接写出|n|的最小值;
(3)将该抛物线先向右平移个单位长度,再向上平移个单位长度,随着k的变化,平移后的抛物线的顶点都在某个新函数的图象上,求新函数的解析式(不要求写自变量的取值范围).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下列材料,完成任务:
自相似图形
定义:若某个图形可分割为若干个都与它相似的图形,则称这个图形是自相似图形.例如:正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边的中点,连接EG,HF交于点O,易知分割成的四个四边形AEOH、EBFO、OFCG、HOGD均为正方形,且与原正方形相似,故正方形是自相似图形.
任务:
(1)图1中正方形ABCD分割成的四个小正方形中,每个正方形与原正方形的相似比为 ;
(2)如图2,已知△ABC中,∠ACB=90°,AC=4,BC=3,小明发现△ABC也是“自相似图形”,他的思路是:过点C作CD⊥AB于点D,则CD将△ABC分割成2个与它自己相似的小直角三角形.已知△ACD∽△ABC,则△ACD与△ABC的相似比为 ;
(3)现有一个矩形ABCD是自相似图形,其中长AD=a,宽AB=b(a>b).
请从下列A、B两题中任选一条作答:我选择 题.
A:①如图3﹣1,若将矩形ABCD纵向分割成两个全等矩形,且与原矩形都相似,则a= (用含b的式子表示);
②如图3﹣2若将矩形ABCD纵向分割成n个全等矩形,且与原矩形都相似,则a= (用含n,b的式子表示);
B:①如图4﹣1,若将矩形ABCD先纵向分割出2个全等矩形,再将剩余的部分横向分割成3个全等矩形,且分割得到的矩形与原矩形都相似,则a= (用含b的式子表示);
②如图4﹣2,若将矩形ABCD先纵向分割出m个全等矩形,再将剩余的部分横向分割成n个全等矩形,且分割得到的矩形与原矩形都相似,则a= (用含m,n,b的式子表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】数学教师将班中留守学生的学习状况分成四个等级,制成不完整的统计图:
(1)该班有多少名留守学生?并将该条形统计图补充完整.
(2)数学教师决定从等级的留守学生中任选两名进行数学学习帮扶,使用列表或画树状图的方法,求出所选帮扶的两名留守学生来自同一等级的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx﹣3过A(1,0),B(﹣3,0),直线AD交抛物线于点D,点D的横坐标为﹣2,点P(m,n)是线段AD上的动点.
(1)求直线AD及抛物线的解析式;
(2)过点P的直线垂直于x轴,交抛物线于点Q,求线段PQ的长度l与m的关系式,m为何值时,PQ最长?
(3)在平面内是否存在整点(横、纵坐标都为整数)R,使得P,Q,D,R为顶点的四边形是平行四边形?若存在,直接写出点R的坐标;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,在正方形ABCD中,P是对角线AC上的一点,点E在BC的延长线上,且PE=PB.
(1)求证:△BCP≌△DCP;
(2)求证:∠DPE=∠ABC;
(3)把正方形ABCD改为菱形,其它条件不变(如图②),若∠ABC=58°,则∠DPE= 度.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com