【题目】武汉某文化旅游公司为了在军运会期间更好地宣传武汉,在工厂定制了一批具有浓郁的武汉特色的商品.为了了解市场情况,该公司向市场投放,型商品共件进行试销,型商品成本价元/件,商品成本价元/件,其中型商品的件数不大于型的件数,且不小于件,已知型商品的售价为元/件,型商品的售价为元/件,且全部售出.设投放型商品件,该公司销售这批商品的利润元.
(1)直接写出与之间的函数关系式:_______;
(2)为了使这批商品的利润最大,该公司应该向市场投放多少件型商品?最大利润是多少?
(3)该公司决定在试销活动中每售出一件型商品,就从一件型商品的利润中捐献慈善资金元,当该公司售完这件商品并捐献资金后获得的最大收益为元时,求的值.
科目:初中数学 来源: 题型:
【题目】某公司开发处一款新的节能产品,该产品的成本价为6元/件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试销售,售价为10元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘制成图象,图中的折线ABC表示日销售量y(件)与销售时间x(天)之间的函数关系.
(1)求y与x之间的函数表达式,并写出x的取值范围;
(2)若该节能产品的日销售利润为W(元),求W与x之间的函数表达式,并求出日销售利润不超过1040元的天数共有多少天?
(3)若5≤x≤17,直接写出第几天的日销售利润最大,最大日销售利润是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线l1的解析式为y=﹣x+2,l1与x轴交于点B,直线l2经过点D(0,5),与直线l1交于点C(﹣1,m),且与x轴交于点A,
(1)求点C的坐标及直线l2的解析式;
(2)求△ABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为了弘扬中华传统文化,了解学生整体阅读能力,组织全校的1000名学生进行一次阅读理解大赛.从中抽取部分学生的成绩进行统计分析,根据测试成绩绘制了频数分布表和频数分布直方图:
分组/分 | 频数 | 频率 |
50≤x<60 | 6 | 0.12 |
60≤x<70 | 0.28 | |
70≤x<80 | 16 | 0.32 |
80≤x<90 | 10 | 0.20 |
90≤x≤100 | 4 | 0.08 |
(1)频数分布表中的 ;
(2)将上面的频数分布直方图补充完整;
(3)如果成绩达到90及90分以上者为优秀,可推荐参加决赛,估计该校进入决赛的学生大约有 人.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将线段OB绕点O逆时针旋转60°得到线段OC,继续旋转α(0°<α<120°)得到线段OD,连接CD.
(1)如图,连接BD,则∠BDC的大小=_____(度);
(2)将线段OB放在平面直角坐标系中,O是坐标原点,点B的坐标为(﹣6,0),以OB为斜边作Rt△OBE,使∠OBE=∠OCD,且点E在第三象限,若∠CED=90°,则α的大小=_____(度),点D的坐标为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】知识是用来为人类服务的,我们应该把它们用于有意义的方面.下面就两个情景请你作出评判.
情景一:从教室到图书馆,总有少数同学不走人行道而横穿草坪,这是为什么呢?试用所学数学知识来说明这个问题.
情景二:A、B是河流l两旁的两个村庄,现要在河边修一个抽水站向两村供水,问抽水站修在什么地方才能使所需的管道最短?请在图中表示出抽水站点P的位置,并说明你的理由:
你赞同以上哪种做法?你认为应用数学知识为人类服务时应注意什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校数学课外活动小组在学习了锐角三角函数后,组织了一次利用自制的测角仪测量古塔高度的活动.具体方法如下:在古塔前的平地上选择一点E,某同学站在E点用测角仪测得古塔顶的仰角为30°,从E向着古塔前进12米后到达点F,又测得古塔顶的仰角为45°,并绘制了如图的示意图(图中线段AE=BF=1.6米,表示测角的学生眼睛到地面的高度).请你帮着计算古塔CD的高度(结果保留整数,参考数据:).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知线段和,直线和相交于点,,利用尺规,按下列要求作图(不写作法,保留作图痕迹):
(1)在射线,上分别作线段,,使它们分别与线段相等,在射线,上分别作线段,,使它们分别与线段相等;
(2)分别连接线段,,,,你得到了一个怎样的图形?
(3)点与点之间的所有连线中,哪条最短?请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com