精英家教网 > 初中数学 > 题目详情
如图,△ABC中,∠ABC,∠ACB的平分线相交于点O,过点O作OE∥AB,OF∥AC,分别交BC于E,F,若BC=8cm,求△OEF的周长.
考点:等腰三角形的判定与性质,平行线的性质
专题:
分析:由OB,OC分别是△ABC的∠ABC和∠ACB的平分线和OE∥AB、OF∥AC可推出BE=OE,OF=FC,显然△OEF的周长即为BC的长度.
解答:解:∵OB,OC分别是∠ABC,∠ACB的平分线,
∴∠ABO=∠EBO,∠ACO=∠FCO,
∵OE∥AB,OF∥AC,
∴∠ABO=∠BOE,∠ACO=∠COF,
∴∠EBO=∠BOE,∠FCO=∠COF,
∴BE=OE,OF=FC,
∴BC=BE+EF+FC=OF+OE+EF,
∵BC=8cm,
∴OF+OE+EF=8cm
∴△OEF的周长=OF+OE+EF=8cm.
点评:此题运用了平行线性质,角平分线定义以及等腰三角形的判定定理,较为灵活,难度中等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

有四边形ABCD(任意),AD与BC的延长线交于D点,E、F分别为AC、BD的中点,连接EF、FP、EP,则S四边形ABCD=
 
S△PFE

查看答案和解析>>

科目:初中数学 来源: 题型:

已知等腰△ABC中,AB=AC,AD⊥BC于D,CG∥AB,BG交AD、AC于E、F,连接EC,试说明:∠G=∠ACE.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图折叠成一个正方体后和A面相对的是(  )
A、B面B、D面C、E面D、F面

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图,在梯形ABCD中,AB∥CD,M是AD中点,BM交AC于点K,AC=24cm,DC:AB=2:5,求AK、KC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)先化简,再求值:
a-b
a
÷(a-
2ab-b2
a
),其中a=
3
+1,b=
3
-1
(2)如图,点A、B在∠MON边上,求作一个点P,使它到边OM,ON的距离相等,且到点A、B的距离也相等.要求尺规,不写作法,必须保留痕迹.

查看答案和解析>>

科目:初中数学 来源: 题型:

某船从A码头顺流而下到达B码头,然后逆流返回,到达A、B两码头之间的C码头,一共航行了7小时,已知此船在静水中的速度为7.5千米时,水流速度为2.5千米/时,A、C两码头之间的航程为10千米,求A、B两码头之间的航程.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AB=AC,D为BC上一点,DE⊥AB,DF⊥AC,BH⊥AC,求证:DE+DF=BH.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知三角形的两边的长分别是4cm和9cm.
(1)求第三边的取值范围;
(2)若第三边长是偶数,求第三边长;
(3)求周长的取值范围(第三边长是整数).

查看答案和解析>>

同步练习册答案