精英家教网 > 初中数学 > 题目详情
如图,已知正方形ABCD的边长为4,E为CD边上的一点,DE=1,以点A为中心,把△ADE顺时针旋转90°,得△ABE′,连接EE′,求EE′的长.
考点:旋转的性质,正方形的性质
专题:
分析:根据旋转的性质得出全等,根据全等三角形性质得出BE′=DE=1,∠ABE′=∠ADE=90°,求出CE、CF,根据勾股定理求出即可.
解答:解:由旋转可知:△ABE′≌△ADE,
则BE′=DE=1,∠ABE′=∠ADE=90°,
∵∠ABE′+∠ABC=180°,
∴点E′、B、C三点共线.
在Rt△E′CE中,E′C=4+1=5,CE=4-1=3,
由勾股定理可得:EE′=
FC2+CE2
=
52+32
=
34
点评:本题考查了旋转的性质,勾股定理,全等三角形的性质的应用,注意:旋转后得出的图形和原图形全等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

先化简,再求值3x2+(y-2x2)-
3
4
(4x2-2y)
,其中x=
1
2
,y=1.

查看答案和解析>>

科目:初中数学 来源: 题型:

若-3a<-2a,则a一定满足的条件是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

计算
(1)a•a2•a3+(-2a32-a8÷a2;            
(2)(a+3b)(a-2b)-(2a-b)2

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,从点A(0,2)发出的一束光,经x轴反射,过点B(4,3),则这束光从点A到点B所经过路径的长为(  )
A、6
B、
41
C、7
D、5+2
2

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC中,∠ACB=90°,将△ABC绕点A逆时针旋转,使得AC落在AB边上,得△AED,连接EC、BD,求证:∠BCE=∠BDE.

查看答案和解析>>

科目:初中数学 来源: 题型:

104+324
44+324
×
224+324
164+324
×
344+324
284+324
×
464+324
404+324
×
584+324
524+324

查看答案和解析>>

科目:初中数学 来源: 题型:

我市某重点中学校团委、学生会发出倡议,在初中各年级捐款购买书籍送给我市贫困地区的学校.初一年级利用捐款买甲、乙两种自然科学书籍若干本,用去5324元;初二年级买了A、B两种文学书籍若干本,用去4840元,其中A、B的数量分别与甲、乙的数量相等,且甲种书与B种书的单价相同,乙种书与A种书的单价相同.若甲、乙两种书的单价之和为121元,则初一和初二两个年级共向贫困地区的学校捐献了
 
本书.

查看答案和解析>>

科目:初中数学 来源: 题型:

下列运算正确的是(  )
A、
1
2
÷(-
1
2
)
=-
1
4
B、16÷4÷2=8
C、-1÷2×
1
2
=-1
D、-
4
3
÷(-4)=
1
3

查看答案和解析>>

同步练习册答案