精英家教网 > 初中数学 > 题目详情
17、(1)如图1,可以求出阴影部分的面积是
a2-b2
(写成两数平方差的形式);
(2)如图2,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是
a-b
,长是
a+b
,面积是
(a-b)(a+b)
(写成多项式乘法的形式);
(3)比较左、右两图的阴影部分面积,可以得到乘法公式
(a+b)(a-b)=a2-b2
(用式子表达).
分析:(1)中的面积=大正方形的面积-小正方形的面积=a2-b2
(2)中的长方形,宽为a-b,长为a+b,面积=长×宽=(a+b)(a-b);
(3)中的答案可以由(1)、(2)得到,(a+b)(a-b)=a2-b2
解答:解:(1)阴影部分的面积=大正方形的面积-小正方形的面积=a2-b2
(2)长方形的宽为a-b,长为a+b,面积=长×宽=(a+b)(a-b);
(3)由(1)、(2)得到,(a+b)(a-b)=a2-b2
点评:本题考查了平方差公式的几何表示,利用不同的方法表示图形的面积是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

29、乘法公式的探究及应用
(1)如图1,可以求出阴影部分的面积是
a2-b2
(写成两数平方差的形式);
(2)如图2,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是
a-b
,长是
a+b
,面积是
(a+b)(a-b)
(写成多项式乘法的形式);

(3)比较图1、图2阴影部分的面积,可以得到公式
(a+b)(a-b)=a2-b2

(4)运用你所得到的公式,计算下列各题:
①10.2×9.8,②(2m+n-p)(2m-n+p).

查看答案和解析>>

科目:初中数学 来源: 题型:

乘法公式的探究及应用.
(1)如图1,可以求出阴影部分的面积是
a2-b2
a2-b2
(写成两数平方差的形式);
(2)如图2,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是
a-b
a-b
,长是
a+b
a+b
,面积是
(a+b)(a-b)
(a+b)(a-b)
(写成多项式乘法的形式)
(3)比较左、右两图的阴影部分面积,可以得到乘法公式
(a+b)(a-b)=a2-b2
(a+b)(a-b)=a2-b2
(用式子表达)
(4)运用你所得到的公式,计算:10.3×9.7(x+2y-3)(x-2y+3).

查看答案和解析>>

科目:初中数学 来源: 题型:

探究题.

(1)如图1,可以求出阴影部分的面积是
a2-b2
a2-b2
(写成两数平方差的形式);
(2)如图2,若将阴影部分裁剪下来,重新拼成一个长方形,它的宽是
(a-b)
(a-b)
,长是
(a+b)
(a+b)
,面积是
(a+b)(a-b)
(a+b)(a-b)
(写成多项式乘法的形式)
(3)比较图1、图2两图的阴影部分面积,可以得到什么结论?
(4)运用你所得到的公式(用其它方式计算或只得出结果的,不得分),计算:10.3×9.7.

查看答案和解析>>

科目:初中数学 来源:期末题 题型:解答题

乘法公式的探究及应用(1)如图1,可以求出阴影部分的面积是(    )(写成两数平方差的形式);
(2)如图2,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是(    ),长是(    ),面积是(    ) (写成多项式乘法的形式);
(3)比较图1、图2阴影部分的面积,可以得到公式(    );
(4)运用你所得到的公式,计算下列各题:①10.2×9.8,②(2m+n﹣p)(2m﹣n+p).

查看答案和解析>>

同步练习册答案