精英家教网 > 初中数学 > 题目详情
如图,已知△ABC和△DEF是两个边长都为1cm的等边三角形,且B、D、C、E都在同一直线精英家教网上,连接AD及CF.
(1)求证:四边形ADFC是平行四边形;
(2)若BD=0.3cm,△ABC沿着BE的方向以每秒1cm的速度运动,设△ABC运动时间为t秒,
①当t为何值时,?ADFC是菱形?请说明你的理由;
②?ADFC有可能是矩形吗?若可能,求出t的值及此矩形的面积;若不可能,请说明理由.
分析:(1)根据已知条件可知AC∥DF,即可得出四边形ADFC是平行四边形,
(2)根据△ABC沿着BE的方向以每秒1cm的速度运动,所以当t=
0.3
1
秒时,B与D重合,这时四边形为菱形,
(3)若平行四边形ADFC是矩形,则∠ADF=90°,E与B重合,得出t=1.3秒,可求出此时矩形的面积.
解答:精英家教网(1)证明:∵△ABC和△DEF是两个边长都为lcm的等边三角形,
∴AC=DF=1cm,∠ACB=∠FDE=60°,
∴AC∥DF,
∴四边形ADFC是平行四边形;

(2)①当t=0.3秒时,平行四边形ADFC是菱形,理由如下:
∵△ABC沿着BE的方向以每秒1cm的速度运动,
∴当t=
0.3
1
秒时,B与D重合,如图所示,
精英家教网则AD=AE=BC=DE=DF=EF,
∴平行四边形ADFC是菱形,
②若平行四边形ADFC是矩形,则∠ADF=90°,
∴∠ADC=90-60=30°
同理∠DAB=30°=∠ADC,
∴BA=BD,
同理EC=EF,
∴E与B重合,
∴t=(1+0.3)÷1=1.3秒,
此时,如图,在Rt△ADF中,
∠ADF=90°,DF=1cm,AF=2cm,
AD=
22-12
=
3
cm,
∴矩形ADFC的面积=AD×DF=
3
cm2
点评:本题考查了等边三角形的边关系,根据等边三角形三边相等,三个角相等来解答问题,难度较大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,已知△ABC和△DEF,∠A=∠D=90°,且△ABC与△DEF不相似,问是否存在某种直线分割,使△ABC所分割成的两个三角形与△DEF所分割成的两个三角形分别对应相似?
(1)如果存在,请你设计出分割方案,并给出证明;如果不存在,请简要说明理由;
(2)这样的分割是唯一的吗?若还有,请再设计出一种.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知△ABC和△DEF是两个边长都为10cm的等边三角形,且B、D、C、E都在同一直线上精英家教网,连接AD、CF.
(1)求证:四边形ADFC是平行四边形;
(2)若BD=3cm,△ABC沿着BE的方向以每秒1cm的速度运动,设△ABC运动时间为t秒,
①当t为何值时,?ADFC是菱形?请说明你的理由;
②?ADFC有可能是矩形吗?若可能,求出t的值及此矩形的面积;若不可能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

19、如图,已知△ABC和△A″B″C″及点O.
(1)画出△ABC关于点O对称的△A′B′C′;
(2)若△A″B″C″与△A′B′C′关于点O′对称,请确定点O′的位置;

查看答案和解析>>

科目:初中数学 来源: 题型:

23、如图,已知△ABC和两条相交于O点且夹角为60°的直线m、n.
(1)画出△ABC关于直线m的对称△A1B1C 1,再画出△A1B1C 1关于直线n的对称△A2B2C 2
(2)你认为△A2B2C 2可视为△ABC绕着哪一点旋转多少度得到的?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•南岗区二模)如图,已知△ABC和△DBE均为等腰直角三角形,∠ABC=∠DBE=90°,求证:AD=CE.

查看答案和解析>>

同步练习册答案