【题目】二次函数 y=ax2+bx+c(a≠0)的图象与 y 轴交于点(0,﹣2),且过点 A(﹣1,1)和 B(4,6).
(1)求二次函数的解析式,并写出其图象的顶点坐标;
(2)当 2≤x≤5 时,求二次函数的函数值 y 的取值范围.
【答案】(1)该二次函数解析式为:y=x2﹣2x﹣2,图象的顶点坐标为(1,﹣3);(2)当 2≤x≤5 时,二次函数的函数值 y 的取值范围为﹣2≤y≤13.
【解析】
(1)利用待定系数法求解可得其解析式,将其配方成顶点式可得其顶点坐标;
(2)先由y=(x﹣1)2﹣3知当x>1时y随x的增大而增大,据此求出x=2和x=5时y的值即可得答案.
(1)根据题意,将(0,﹣2),(﹣1,1),(4,6)代入解析式,得:
,解得:,所以二次函数的解析式为y=x2﹣2x﹣2=(x﹣1)2﹣3,∴该二次函数的图象的顶点的坐标为(1,﹣3).
(2)∵y=(x﹣1)2﹣3,∴当x>1时,y随x的增大而增大,当x=2时,y=﹣2;
当x=5时,y=13;
∴当2≤x≤5时,二次函数的函数值y的取值范围为﹣2≤y≤13.
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,对角线AC,BD相交于点O,∠ADB=30°,E为BC边上一点,∠AEB=45°,CF⊥BD于F.下列结论:①BE=CD,②BF=3DF,③AE=AO,④CE=CF.正确的结论有( )
A. ①②B. ②③C. ①②④D. ①②③
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知BC是⊙O的直径,点D是BC延长线上一点,AB=AD,AE是⊙O的弦,∠AEC=30°.
(1)求证:直线AD是⊙O的切线;
(2)若AE⊥BC,垂足为M,⊙O的半径为4,求AE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,直线 y=x+2 与两坐标轴分别交于A、B 两点,点 C 是 OB 的中点,D、E 分 别是直线 AB、y 轴上的动点,则△CDE 周长的最小值是________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=2x+6与反比例函数y=(k>0)的图象交于点A(1,m),与x轴交于点B,平行于x轴的直线y=n(0<n<6)交反比例函数的图象于点M,交AB于点N,连接BM.
(1)求m的值和反比例函数的表达式;
(2)观察图象,直接写出当x>0时不等式2x+6﹣<0的解集;
(3)直线y=n沿y轴方向平移,当n为何值时,△BMN的面积最大?最大值是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角坐标系中,正方形OABC的顶点O与原点重合,顶点A、C分别在x轴、y轴上,反比例函数y=(k≠0,x>0)的图象与正方形的两边AB、BC分别交于点E、F,FD⊥x轴,垂足为D,连接OE、OF、EF,FD与OE相交于点G.下列结论:①OF=OE;②∠EOF=60°;③四边形AEGD与△FOG面积相等;④EF=CF+AE;⑤若∠EOF=45°,EF=4,则直线FE的函数解析式为.其中正确结论的个数是( )
A.2B.3C.4D.5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=+bx﹣的图象与x轴交于点A(﹣3,0)和点B,以AB为边在x轴上方作正方形ABCD,点P是x轴上一动点,连接DP,过点P作DP的垂线与y轴交于点E.
(1)b= ;点D的坐标: ;
(2)线段AO上是否存在点P(点P不与A、O重合),使得OE的长为1;
(3)在x轴负半轴上是否存在这样的点P,使△PED是等腰三角形?若存在,请求出点P的坐标及此时△PED与正方形ABCD重叠部分的面积;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形中,是对角线上一个动点,连结,过作,,
,分别为垂足.
(1)求证:;
(2)①写出、、三条线段满足的等量关系,并证明;②求当,时,的长
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF.
(1)求证△ACD≌△BFD
(2)求证:BF=2AE;
(3)若CD=,求AD的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com