精英家教网 > 初中数学 > 题目详情

【题目】已知点M2x4x2+2)在y轴上,则点M的坐标为_____

【答案】06

【解析】

根据y轴上点的横坐标为0列式计算即可得x的值,进而得出点M的坐标.

∵点M2x4x22)在y轴上,

2x40

解得:x2

x226

∴点M的坐标为(06),

故答案为:(06).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】两条平行直线上各有n个点,用这n对点按如下的规则连接线段;

平行线之间的点在连线段时,可以有共同的端点,但不能有其它交点;

符合要求的线段必须全部画出;

1展示了当n=1时的情况,此时图中三角形的个数为0;

2展示了当n=2时的一种情况,此时图中三角形的个数为2;

(1)当n=3时,请在图3中画出使三角形个数最少的图形,此时图中三角形的个数为__________个;

(2)试猜想当n对点时,按上述规则画出的图形中,最少有多少个三角形?

(3)当n=2006时,按上述规则画出的图形中,最少有多少个三角形?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】用不等式表示“2a3b的差是正数______________________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们定义:如图1,在ABC看,把AB点绕点A顺时针旋转α(0°α180°)得到AB',把AC绕点A逆时针旋转β得到AC',连接B'C'.当α+β=180°时,我们称A'B'C'是ABC的“旋补三角形”,AB'C'边B'C'上的中线AD叫做ABC的“旋补中线”,点A叫做“旋补中心”.

特例感知:

(1)在图2,图3中,AB'C'是ABC的“旋补三角形”,AD是ABC的“旋补中线”.

如图2,当ABC为等边三角形时,AD与BC的数量关系为AD= BC;

如图3,当BAC=90°,BC=8时,则AD长为

猜想论证:

(2)在图1中,当ABC为任意三角形时,猜想AD与BC的数量关系,并给予证明.

拓展应用

(3)如图4,在四边形ABCD,C=90°,D=150°,BC=12,CD=2,DA=6.在四边形内部是否存在点P,使PDC是PAB的“旋补三角形”?若存在,给予证明,并求PAB的“旋补中线”长;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx+c(a,b,c为常数,a0),其中自变量x与函数值y之间满足下面的对应关系:

x

3

5

7

y

2.5

2.5

﹣1.5

则a+b+c=_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若x=﹣2,则x0、x1、x2之间的大小关系是(
A.x0>x2>x1
B.x2>x1>x0
C.x0>x1>x2
D.x1>x2>x0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】不等式4x﹣6≥7x﹣12的非负整数解为________________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算
(1)( 0﹣(﹣ 2÷22﹣(﹣1)3
(2)(

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证(
A.(a+b)2=a2+2ab+b2
B.(a﹣b)2=a2﹣2ab+b2
C.a2﹣b2=(a+b)(a﹣b)
D.(a+2b)(a﹣b)=a2+ab﹣2b2

查看答案和解析>>

同步练习册答案