精英家教网 > 初中数学 > 题目详情

【题目】如图,ABC内接于⊙OAD为⊙O的直径,ADBC相交于点E,且BECE

1)请判断ADBC的位置关系,并说明理由;

2)若BC6ED2,求AE的长.

【答案】1ADBC,理由见解析;(2

【解析】

1)如图,连接OBOC,根据全等三角形的性质即可得到结论;

2)设半径OCr,根据勾股定理即可得到结论.

1ADBC

理由:如图,连接OBOC

在△BOE与△COE中,

∴△BOE≌△COESSS),

∴∠BEO=∠CEO90°

ADBC

2)设半径OCr

BC6DE2

CE3OEr2

CE2+OE2OC2

32+r22r2

解得r

AD

AEADDE

AE2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】小李在景区销售一种旅游纪念品,已知每件进价为6元,当销售单价定为8元时,每天可以销售200件.市场调查反映:销售单价每提高1元,日销量将会减少10件,物价部门规定:销售单价不能超过12元,设该纪念品的销售单价为x(元),日销量为y(件),日销售利润为w(元).

1)求yx的函数关系式.

2)要使日销售利润为720元,销售单价应定为多少元?

3)求日销售利润w(元)与销售单价x(元)的函数关系式,当x为何值时,日销售利润最大,并求出最大利润.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商品的进价为每件20元,售价为每件30元,每个月可卖出180件:如果每件商品的售价每上涨1元,则每个月就会少卖出10件,但每件售价不能高于35元,设每件商品的售价上涨元(为整数),每个月的销售利润为元。

1)求的函数关系式,并直接写出自变量的取值范围:

2)每件商品的售价定为多少元时,每个月的利润恰好是1920元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是抛物线y1=ax2+bx+ca≠0)图象的一部分,抛物线的顶点坐标A13),与x轴的一个交点B40),直线y2=mx+nm≠0)与抛物线交于AB两点,下列结论:

①2a+b=0②abc0方程ax2+bx+c=3有两个相等的实数根;抛物线与x轴的另一个交点是(﹣10);1x4时,有y2y1

其中正确的是( )

A. ①②③ B. ①③④ C. ①③⑤ D. ②④⑤

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,用一块长为50cm、宽为30cm的长方形铁片制作一个无盖的盒子,若在铁片的四个角截去四个相同的小正方形,设小正方形的边长为xcm

1)底面的长AB  cm,宽BC  cm(用含x的代数式表示)

2)当做成盒子的底面积为300cm2时,求该盒子的容积.

3)该盒子的侧面积S是否存在最大的情况?若存在,求出x的值及最大值是多少?若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解方程:

1)(2x5290

24x2+2x10

3)(x12+2xx1)=0

4x2+6x99910

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是  

A. 55° B. 60° C. 65° D. 70°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数图象过ABC三点,点A的坐标为(﹣10),点B的坐标为(40),点Cy轴正半轴上,且ABOC

1)求点C的坐标;

2)求二次函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABO的直径,射线BCO于点DE是劣弧AD上一点,且,过点EEFBC于点F,延长FEBA的延长线交与点G

1)证明:GFO的切线;

2)若AG6GE6,求△GOE的面积.

查看答案和解析>>

同步练习册答案