精英家教网 > 初中数学 > 题目详情

【题目】某商品的进价为每件20元,售价为每件30元,每个月可卖出180件:如果每件商品的售价每上涨1元,则每个月就会少卖出10件,但每件售价不能高于35元,设每件商品的售价上涨元(为整数),每个月的销售利润为元。

1)求的函数关系式,并直接写出自变量的取值范围:

2)每件商品的售价定为多少元时,每个月的利润恰好是1920元?

【答案】(1);(2)售价为32元,利润恰好为1920元

【解析】

1)根据题意可知单件利润:元,销量:件,根据销售利润=单件利润×销量即可列出函数关系式,再根据题意得到x的取值;

2)令y=1920得到一元二次方程,解之即可求解.

解:(1)由题知:

单件利润:

销量:

2)由题知:

整理得:

售价(元)

售价为32元,利润恰好为1920

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,ABO的直径,点CAB的延长线上,CDO相切于点DCEAD,交AD的延长线于点E

1)求证:BDC=A

2)若CE=4DE=2,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某种商品的标价为500/件,经过两次降价后的价格为405/件,并且两次降价的百分率相同.

1)求该种商品每次降价的百分率;

2)若该种商品进价为400/件,两次降价共售出此种商品100件,为使两次降价销售的总利润不少于3200元.问第一次降价后至少要售出该种商品多少件?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,点EBC的中点,连接DE,过点AAGEDDE于点F,交CD于点G

1)证明:△ADG≌△DCE;(2)连接BF,证明:ABFB

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=x2+bx+cy轴交于点A(0,2),对称轴为直线x=﹣2,平行于x轴的直线与抛物线交于B、C两点,点B在对称轴左侧,BC=6.

(1)求此抛物线的解析式.

(2)点Px轴上,直线CP将△ABC面积分成2:3两部分,请直接写出P点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形网格中,的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题:

以原点为对称中心,画出的中心对称图形

以原点为位似中心,在原点的另一侧画出的位似三角形的位似比为

的面积________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=﹣x2+x+6及一次函数yx+m,将该二次函数在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新图象(如图所示),当直线yx+m与这个新图象有四个交点时,m的取值范围是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC内接于⊙OAD为⊙O的直径,ADBC相交于点E,且BECE

1)请判断ADBC的位置关系,并说明理由;

2)若BC6ED2,求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形网格图中建立一直角坐标系,一条圆弧经过网格点ABC,请在网格中进行下列操作:

1)请在图中确定该圆弧所在圆心D点的位置,D点坐标为   

2)连接ADCD,则⊙D的半径为   ;扇形DAC的圆心角度数为   

3)若扇形DAC是某一个圆锥的侧面展开图,求该圆锥的底面半径.

查看答案和解析>>

同步练习册答案