分析 (1)该函数解析式只有一个待定系数,只需将B点坐标代入解析式中即可.
(2)首先根据抛物线的解析式确定A点坐标,然后通过证明△ABC是直角三角形来推导出直径AB和圆心的位置,由此确定圆心坐标.
(3)△MBC的面积可由S△MBC=$\frac{1}{2}$BC×h表示,若要它的面积最大,需要使h取最大值,即点M到直线BC的距离最大,若设一条平行于BC的直线,那么当该直线与抛物线有且只有一个交点时,该交点就是点M.
解答 解:(1)将B(4,0)代入抛物线的解析式中,得:
0=16a-$\frac{3}{2}$×4-2,即:a=$\frac{1}{2}$;
∴抛物线的解析式为:y=$\frac{1}{2}$x2-$\frac{3}{2}$x-2.
(2)由(1)的函数解析式可求得:A(-1,0)、C(0,-2);
∴OA=1,OC=2,OB=4,
即:OC2=OA•OB,
又∵OC⊥AB,
∴△OAC∽△OCB,
∴∠OCA=∠OBC;
∴∠ACB=∠OCA+∠OCB=∠OBC+∠OCB=90°,
∴△ABC为直角三角形,AB为△ABC外接圆的直径;
∴该外接圆的圆心为AB的中点,且坐标为(1.5,0).
(3)已求得:B(4,0)、C(0,-2),可得直线BC的解析式为:y=x-2;
设直线l∥BC,则该直线的解析式可表示为:y=x+b,当直线l与抛物线只有一个交点时,可列方程:
x+b=x2-x-2,即:x2-2x-2-b=0,且△=0;
∴4-4×(-2-b)=0,即b=4;
∴直线l:y=x-4.
由于S△MBC=BC×h,当h最大(即点M到直线BC的距离最远)时,△ABC的面积最大
所以点M即直线l和抛物线的唯一交点,有:
$\left\{\begin{array}{l}{y=\frac{1}{2}{x}^{2}-\frac{3}{2}x-2}\\{y=\frac{1}{2}x-4}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{x=2}\\{y=-3}\end{array}\right.$,
即M(2,-3).
点评 考查了二次函数综合题,熟练掌握待定系数法求函数解析式,直角三角形的相关性质以及三角形的面积公式是理出思路的关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com