精英家教网 > 初中数学 > 题目详情

【题目】如图,在矩形中,,点是边的中点,联结,若将沿翻折,点落在点处,联结,则______.

【答案】

【解析】

由矩形的性质得出∠B90°,BCAD10,由勾股定理求出AE,由翻折变换的性质得出△AFE≌△ABE,得出∠AEF=∠AEBEFBE5,因此EFCE,由等腰三角形的性质得出∠EFC=∠ECF,由三角形的外角性质得出∠AEB=∠ECFcosECFcosAEB,即可得出结果.

如图所示:

∵四边形ABCD是矩形,

∴∠B90°,BCAD10

EBC的中点,

BECEBC5

AE

由翻折变换的性质得:△AFE≌△ABE

∴∠AEF=∠AEBEFBE5

EFCE

∴∠EFC=∠ECF

∵∠BEF=∠EFC+∠ECF

∴∠AEB=∠ECF

cosECFcosAEB=

故答案为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为满足市场需求某超市在五月初五“端午节”来临前夕购进一种品牌

粽子每盒进价是40元超市规定每盒售价不得少于45元根据以往销售经验发现:当售价定为每盒45元时每天可卖出700盒每盒售价每提高1元每天要少卖出20盒

1试求出每天的销售量y与每盒售价之间的函数关系式;4分

2当每盒售价定为多少元时每天销售的利润最大?最大利润是多少?6分

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且EDF=45°.将DAE绕点D逆时针旋转90°,得到DCM.

1)求证:EF=FM

2)当AE=1时,求EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某数学兴趣小组根据学习函数的经验,对分段函数y的图象与性质进了探究,请补充完整以下的探索过程.

x

2

1

0

1

2

3

4

y

3

0

1

0

1

0

3

1)填空:a   b   

2提上述表格补全函数图象;该函数图象是关于   对称的   (横线上填轴对称或中心对称)图形.

3)若直线yx+t与该函数图象有三个交点,直接写出t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形OABC的一边OAx轴的负半轴上,O是坐标原点,tan∠AOC=,反比例函数y=的图象经过点C,与AB交于点D,若COD的面积为20,则k的值等于_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点AB的坐标分别为(1,0),(2,0).若二次函数y=x2+(a﹣3)x+3的图象与线段AB只有一个交点,则a的取值范围是_______________________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x1≤x≤90)天的售价与销售量的相关信息如下表:

时间x(天)

1≤x50

50≤x≤90

售价(元/件)

x40

90

每天销量(件)

2002x

已知该商品的进价为每件30元,设销售该商品的每天利润为y[

1)求出yx的函数关系式;

2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?

3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,点Ax轴的负半轴上,点B的坐标为(﹣2,﹣4),抛物线yax2+bx的对称轴为x=﹣5,该抛物线经过点AB,点EAB与对称轴x=﹣5的交点.

1)如图1,点P为直线AB下方的抛物线上的任意一点,在对称轴x=﹣5上有一动点M,当△ABP的面积最大时,求|PMOM|的最大值以及点P的坐标.

2)如图2,把△ABO沿射线BA方向平移,得到△CDF,其中点CDF分别是点ABO的对应点,且点F与点O不重合,平移过程中,是否存在这样的点F,使得以点AEF为顶点的三角形为等腰三角形?若存在,直接写出点F的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们知道,三角形三个内角平分线的交点叫做三角形的内心,已知点I为ABC的内心.

(1)如图1,连接AI并延长交BC于点D,若AB=AC=3,BC=2,求ID的长;

(2)如图2,过点I作直线交AB于点M,交AC于点N.

若MNAI,求证:MI2=BMCN;

如图3,AI交BC于点D,若BAC=60°,AI=4,求的值.

查看答案和解析>>

同步练习册答案