精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标中,菱形OABC的面积为12,点B在y轴上,点C在反比例函数y= 的图象上,则k的值为(
A.3
B.﹣3
C.6
D.﹣6

【答案】D
【解析】解:连接AC交OB于点D,如图所示. ∵四边形OABC为菱形,
∴AC⊥OB,
∵菱形OABC的面积为12,
∴SOCD= ×12=3.
∵点C在反比例函数y= 的图象上,CD⊥y轴,
∴SOCD= |k|=3,
解得:k=±6.
∵点C在第二象限,
∴k=﹣6.
故选D.

【考点精析】本题主要考查了比例系数k的几何意义和菱形的性质的相关知识点,需要掌握几何意义:表示反比例函数图像上的点向两坐标轴所作的垂线段与两坐标轴围成的矩形的面积;菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形被两条对角线分成四个全等的直角三角形;菱形的面积等于两条对角线长的积的一半才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,点A的坐标为(1,0),P是第一象限内任意一点,连接PO,PA,若∠POA=m°,∠PAO=n°,则我们把(m°,n°)叫做点P 的“双角坐标”.例如,点(1,1)的“双角坐标”为(45°,90°).
(1)点( )的“双角坐标”为
(2)若点P到x轴的距离为 ,则m+n的最小值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知反比例函数y= 的图象经过点P(﹣1,﹣1).
(1)求此函数的表达式;
(2)画出此函数在第一象限内的图象.
(3)根据函数图象写出此函数的一条性质.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在菱形ABCD中,∠BAD=α,E为对角线AC上的一点(不与A,C重合),将射线EB绕点E顺时针旋转β角之后,所得射线与直线AD交于F点.试探究线段EB与EF的数量关系.小宇发现点E的位置,α和β的大小都不确定,于是他从特殊情况开始进行探究.

(1)如图1,当α=β=90°时,菱形ABCD是正方形.小宇发现,在正方形中,AC平分∠BAD,作EM⊥AD于M,EN⊥AB于N.由角平分线的性质可知EM=EN,进而可得△EMF≌△ENB,并由全等三角形的性质得到EB与EF的数量关系为
(2)如图2,当α=60°,β=120°时,
①依题意补全图形;
②请帮小宇继续探究(1)的结论是否成立.若成立,请给出证明;若不成立,
请举出反例说明;
(3)小宇在利用特殊图形得到了一些结论之后,在此基础上对一般的图形进行了探究,设∠ABE=γ,若旋转后所得的线段EF与EB的数量关系满足(1)中的结论,请直接写出角α,β,γ满足的关系:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,O为菱形ABCD对角线的交点,DE∥AC,CE∥BD.
(1)试判断四边形OCED的形状,并说明理由;
(2)若AC=6,BD=8,求线段OE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下表给出了代数式x2+bx+c与x的一些对应值:

x

0

1

2

3

4

x2+bx+c

3

﹣1

3


(1)请在表内的空格中填入适当的数;
(2)设y=x2+bx+c,则当x取何值时,y>0;
(3)请说明经过怎样平移函数y=x2+bx+c的图象得到函数y=x2的图象?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图为二次函数y=ax2+bx+c的图象,在下列说法中: ①ac<0;
②方程ax2+bx+c=0的根是x1=﹣1,x2=3;
③a+b+c>0;
④当x>1时,y随着x的增大而增大.
正确的说法有 . (请写出所有正确的序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若(a+b)2=21,大正方形的面积为13,则小正方形的面积为(
A.3
B.4
C.5
D.6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线BD∥EF,AE与BD交于点C,若∠ABC=30°,∠BAC=75°,则∠CEF的大小为(
A.60°
B.75°
C.90°
D.105°

查看答案和解析>>

同步练习册答案