【题目】阅读材料,解决问题:
材料1:在研究数的整除时发现:能被5、25、125、625整除的数的特征是:分别看这个数的末一位、末两位、末三位、末四位即可,推广成一条结论;末位能被整除的数,本身必能被整除,反过来,末位不能被整除的数,本身也不可能被整除,例如判断992250能否被25、625整除时,可按下列步骤计算:
,为整数,能被25整除
,不为整数,不能被625整除
材料2:用奇偶位差法判断一个数能否被11这个数整除时,可把这个数的奇位上的数字与偶位上的数字分别加起来,再求它们的差,看差能否被11整除,若差能被11整除,则原数能被11整除,反之则不能.
(1)若这个三位数能被11整除,则 ;在该三位数末尾加上和为8的两个数字,让其成为一个五位数,该五位数仍能被11整除,求这个五位数
(2)若一个六位数p的最高位数字为5,千位数字是个位数字的2倍,且这个数既能被125整除,又能被11整除,求这个数.
【答案】(1)m=8,68244;(2)这个数为580250或500500或530750或550000.
【解析】
(1)奇数位分别是6和2,偶数为是m,根据题意可知6+2m能被11整除,且m为0至9的数,从而可求出m的值.设该五位数为,由题意可知a+b=8,且设ba=11n,从而求出a、b的值.
(2)设这个六位数p为,根据题意可知:b=2e,所以e只能取0或1或2或3或4,由材料一可知:能被125整除,可知=250或500或750,然后分情况求出a、b、c、d、e的值.
解:(1)奇数位分别是6和2,偶数为是m,
∴由材料可知:6+2m能被11整除,
∵0≤m≤9,且m是正整数,
∴m=8,
设该五位数为,
∴奇数位之和为:b+2+6,偶数位之和为:a+8,
∴根据题意可知:8+b8a=ba能被11整除,
∴设ba=11n,n为整数,
∵a+b=8,
∴,
∴解得:,
∵0≤a≤9,0≤b≤9,
∴,,
∴,
∴n=0,
∴a=4,b=4,
∴该数为68244;
(2)设这个六位数p为,
由题意可知:b=2e,
∵0≤b≤9,
∴0≤e≤4.5,
∴e=0或1或2或3或4,
∵能被125整除,
∴=125n,n为正整数,
∴1≤n≤7,
∵e=0或1或2或3或4,
∴n=2或4或6,
∴=250或500或750或000
∵偶数位之和为:5+b+d=5+2e+d,奇数位之和为:a+c+e,
∴|(5+2e+d)(a+c+e)|=|5+e+dac|能被11整除,
当=250时,
∴c=2,d=5,e=0,b=0,
∴|5+e+dac|=|8a|,
设|8a|=11m,m为正整数,
∴a=8±11m,
∵0≤a≤9,
∴≤m≤或≤m≤,
∴m=0
∴a=8,
∴该数为580250,
同理:当=500时,该数为500500,
当=750时,该数为530750,
当=000时,该数为550000
综上所述,该数为580250或500500或530750或550000.
科目:初中数学 来源: 题型:
【题目】计算:
(1)(x-1)(x+1)=x2-1,
(x-1)(x2+x+1)=x3-1,
(x-1)(x3+x2+x+1)=x4-1,
(x-1)(x4+x3+x2+x+1)= ,
………
猜想:(x-1)(xn+xn-1+…+x2+x+1)= ,
(2)根据以上结果,试写出下面两式的结果
①(x-1)(x49+x48+…+x2+x+1)= ,
②(x20-1)÷(x-1)= ,
(3)利用以上结论求值:1+3+32+33+34+……+32018
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】线段和角是我们初中数学常见的平面几何图形,它们的表示方法、和差计算以及线段的中点、角的平分线的概念等有很多相似之处,所以研究线段或角的问题时可以运用类比的方法.
特例感知:
(1)如图1,已知点是线段的中点,点是线段的中点若,,则线段________;
数学思考:
(2)如图1,已知点是线段的中点,点是线段的中点,若,,则求线段的长;
拓展延伸:
(3)如图2,平分,平分,设,,请直接用含的式子表示的大小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】七年级(1)班的全体同学排成一列步行去市博物馆参加科技活动,小涛担任通讯员.在队伍中,小涛先数了一下他前后的人数,发现前面的人数是后面人数的2倍,他往前超了8名同学后,发现前面的人数和后面的人数一样.
(1)七年级(1)班有多少名同学?
(2)这些同学要过一座长60米的大桥,安全起见,相邻两个同学间保持相同的固定距离,队伍前进速度为1.2米/秒,从第一名同学刚上桥到全体通过大桥用了90秒,则队伍的全长为多少米?
(3)在(2)的条件下,排在队尾的小刚想把一则通知送到队伍最前的小婷手中,若小刚从队尾追赶小婷的速度是4.2米/秒,他能在15秒内追上小婷吗?说明你的理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某儿童游乐园门票价格规定如下表:
购票张数 | 1~50张 | 51~100张 | 100张以上 |
每张票的价格 | 13元 | 11元 | 9元 |
某校七年级(1)、(2)两个班共102人今年6.1儿童节去游该游乐园,其中(1)班人数较少,不足50人.经估算,如果两个班都以班为单位购票,则一共应付1218元.问:
(1)两个班各有多少学生?
(2)如果两班联合起来,作为一个团体购票,可以节省多少钱?
(3)如果七年级(1)班有10名学生因学校有任务不能参加这次旅游,请你为两个班设计出购买门票的方案,并指出最省钱的方案.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某人为了测量小山顶上的塔ED的高,他在山下的点A处测得塔尖点D的仰角为45°,再沿AC方向前进60 m到达山脚点B,测得塔尖点D的仰角为60°,塔底点E的仰角为30°,求塔ED的高度.(结果保留根号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】用方程解答下列问题.
(1)一个角的余角比它的补角的还少15°,求这个角的度数;
(2)《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市射击队甲、乙两名队员在相同的条件下各射耙10次,每次射耙的成绩情况如图所示:
(1)请将下表补充完整:(参考公式:方差S2= [(x1﹣)2+(x2﹣)2+…+(xn﹣)2])
平均数 | 方差 | 中位数 | |
甲 | 7 |
| 7 |
乙 |
| 5.4 |
|
(2)请从下列三个不同的角度对这次测试结果进行
①从平均数和方差相结合看, 的成绩好些;
②从平均数和中位数相结合看, 的成绩好些;
③若其他队选手最好成绩在9环左右,现要选一人参赛,你认为选谁参加,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将沿着过中点的直线折叠,使点落在边上的,称为第次操作,折痕到的距离记为;还原纸片后,再将沿着过中点的直线折叠,使点落在边上的处,称为第次操作,折痕到的距离记为;按上述方法不断操作下去…,经过第次操作后得到的折痕,到的距离记为,若,则的值为( )
A.B.C.D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com