【题目】计算:
(1)(x-1)(x+1)=x2-1,
(x-1)(x2+x+1)=x3-1,
(x-1)(x3+x2+x+1)=x4-1,
(x-1)(x4+x3+x2+x+1)= ,
………
猜想:(x-1)(xn+xn-1+…+x2+x+1)= ,
(2)根据以上结果,试写出下面两式的结果
①(x-1)(x49+x48+…+x2+x+1)= ,
②(x20-1)÷(x-1)= ,
(3)利用以上结论求值:1+3+32+33+34+……+32018
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB的延长线于切点为G,连接AG交CD于K.
(1)求证:KE=GE;
(2)若KG2=KDGE,试判断AC与EF的位置关系,并说明理由;
(3)在(2)的条件下,若sinE=,AK=,求FG的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AD∥BC,∠A=∠B=90°,AB=5,点E在AB上,∠AED=45°,DE=6,CE=7.求AE的长及sin∠BCE的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,如果点A,点C为某个菱形的一组对角的顶点,且点A,C在直线y=x上,那么称该菱形为点A,C的“极好菱形“.如图为点A,C的“极好菱形”的一个示意图.已知点M的坐标为(1,1),点P的坐标为(3,3).
(1)点E(2,4),F(3,2),G(4,0)中,能够成为点M,P的“极好菱形“的顶点的是 ;
(2)若点M,P的“极好菱形”为正方形,求这个正方形另外两个顶点的坐标;
(3)如果四边形MNPQ是点M,P的“极好菱形”.
①当点N的坐标为(3,1)时,求四边形MNPQ的面积;
②当四边形MNPQ的面积为12,且与直线y=x+b有公共点时,请写出b的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为提高节水意识,小申随机统计了自己家7天的用水量,并分析了第3天的用水情况,将得到的数据进行整理后,绘制成如图所示的统计图.(单位:升)
(1)求这7天内小申家每天用水量的平均数和中位数;
(2)求第3天小申家洗衣服的水占这一天总用水量的百分比;
(3)若规定居民生活用水收费标准为2.80元/立方米,请你估算小申家一个月(按30天计算)的水费是多少元?(1立方米=1000升)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AO⊥BO,垂足为点O,直线CD经过点O,下列结论正确的是( )
A.∠1+∠2=180°B.∠1﹣∠2=90°C.∠1﹣∠3=∠2D.∠1+∠2=90°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,公交车行驶在笔直的公路上,这条路上有,,,四个站点,每相邻两站之间的距离为5千米,从站开往站的车称为上行车,从站开往站的车称为下行车.第一班上行车、下行车分别从站、站同时发车,相向而行,且以后上行车、下行车每隔10分钟分别在,站同时发一班车,乘客只能到站点上、下车(上、下车的时间忽略不计),上行车、下行车的速度均为30千米/小时.
(1)问第一班上行车到站、第一班下行车到站分别用时多少?
(2)若第一班上行车行驶时间为小时,第一班上行车与第一班下行车之间的距离为千米,求与的函数关系式.
(3)一乘客前往站办事,他在,两站间的处(不含,站),刚好遇到上行车,千米,此时,接到通知,必须在35分钟内赶到,他可选择走到站或走到站乘下行车前往站.若乘客的步行速度是5千米/小时,求满足的条件.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读材料:
我们知道,,类似地,我们把看成一个整体,则=.“整体思想”是初中数学解题中的一种重要的思想方法,它在多项式的化简与求职中应用极为广泛.
尝试应用:
(1)把看成一个整体,合并的结果为_______.
(2)已知,求的值.
拓广探索:
(3)已知,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读材料,解决问题:
材料1:在研究数的整除时发现:能被5、25、125、625整除的数的特征是:分别看这个数的末一位、末两位、末三位、末四位即可,推广成一条结论;末位能被整除的数,本身必能被整除,反过来,末位不能被整除的数,本身也不可能被整除,例如判断992250能否被25、625整除时,可按下列步骤计算:
,为整数,能被25整除
,不为整数,不能被625整除
材料2:用奇偶位差法判断一个数能否被11这个数整除时,可把这个数的奇位上的数字与偶位上的数字分别加起来,再求它们的差,看差能否被11整除,若差能被11整除,则原数能被11整除,反之则不能.
(1)若这个三位数能被11整除,则 ;在该三位数末尾加上和为8的两个数字,让其成为一个五位数,该五位数仍能被11整除,求这个五位数
(2)若一个六位数p的最高位数字为5,千位数字是个位数字的2倍,且这个数既能被125整除,又能被11整除,求这个数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com