精英家教网 > 初中数学 > 题目详情

如图,△ABC中,∠B=60°,∠C=30°,AM是BC边上的中线,且AM=4.求△ABC的周长.(结果保留根号)

解:∵∠B=60°,∠C=30°,
∴∠CAB=180°-∠B-∠C=90°,
又∵AM是BC边上的中线,
∴AM=BC,
又∵AM=4,
∴BC=2AM=8,
在Rt△ABC中,∠C=30°,
∴AB=BC=4,AC==4
∴△ABC的周长为:AB+BC+AC=12+4
分析:根据题意可判断出△ABC是直角三角形,然后根据斜边中线等于斜边一半可得出BC的长度,结合30°角所对直角边等于斜边一半可得出AB,利用勾股定理可求出AC,继而可得出△ABC的周长.
点评:此题考查了勾股定理及含30°角的直角三角形的性质,属于基础题,解答本题的关键是判断出△ABC是直角三角形,难度一般.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、已知:如图,△ABC中,点D在AC的延长线上,CE是∠DCB的角平分线,且CE∥AB.
求证:∠A=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、已知:如图,△ABC中,∠BAC=60°,D、E两点在直线BC上,连接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、如图,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求证:∠ANM=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,则∠C的大小是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,△ABC中,点D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度数;
(2)若画∠DAC的平分线AE交BC于点E,则AE与BC有什么位置关系,请说明理由.

查看答案和解析>>

同步练习册答案