精英家教网 > 初中数学 > 题目详情

【题目】如图,有一段防洪大堤,其横断面为梯形,斜坡的坡度,斜坡的坡度,大堤顶宽,为了增加抗洪能力,现将大堤加高,加高部分的横断面为梯形,点分别在的延长线上,当新大堤顶宽时,大堤加高________米.

【答案】1.1

【解析】

分别过E、FDC的垂线,设垂足为G、H;可设大坝加高了xm,在RtDEGRtFHC中,分别用坡面的铅直高x和坡比表示出各自的水平宽,即DG、CH的长,进而可表示出DC的长,已知了DC6m,由此可列出关于x的方程,即可求出大堤加高的高度.

EGDC,FHDC,G、H分别为垂足,

EFDC,

∴∠EGH=FHG=EFH=90°

∴四边形EFHG是矩形;

GH=EF=3.8,

设大堤加高xm,

EG=FH=xm,

i1=,i2=

DG=1.2xm,HC=0.8xm,

DG+GH+HC=CD=6m,

1.2x+3.8+0.8x=6,

解得:x=1.1.

∴大堤加高了1.1m.

故答案为:1.1.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图①ABC,∠BAC=90°,AB=AC直线经过点ABDl于的DCEl于的E

(1)求证BD+CE=DE

(2)当变换到如图②所示的位置时试探究BDCEDE的数量关系请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线l1对应的函数表达式为y=2x-2,直线l1与x轴交于点D.直线l2:y=kx+b与x轴交于点A,且经过点B,直线l1,l2交于点C(m,2).

(1)求点D,点C的坐标;

(2)求直线l2对应的函数表达式;

(3)求△ADC的面积;

(4)利用函数图象写出关于x,y的二元一次方程组的解.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在RtABC中,∠A=90°,AB=AC,点DE分别在边ABAC上,AD=AE,连接DC,点MPN分别为DEDCBC的中点.

(1)观察猜想

1中,线段PMPN的数量关系是 ,位置关系是

(2)探究证明

ADE绕点A逆时针方向旋转到图2的位置,连接MNBDCE,判断PMN的形状,并说明理由;

(3)拓展延伸

ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出PMN面积的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个不透明的盒子里装有30个除颜色外其它均相同的球,其中红球有m个,白球有3m个,其它均为黄球.现小李从盒子里随机摸出一个球,若是红球,则小李获胜;小李把摸出的球放回盒子里摇匀,由小马随机摸出一个球,若为黄球,则小马获胜.

(1)当m=4时,求小李摸到红球的概率是多少?

(2)当m为何值时,游戏对双方是公平的?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列一段话,并解决后面的问题 .观察下面一例数:

1248……

我们发现,这一列数从第2项起,每一项与它前一项的比都等于2 .

一般地,如果一列数从第2项起,每一项与它前一项的比都等于同一个常数,这一列数就叫做等比数列,这个常数叫做等比数列的公比 .

1)等比数列5,-1545……的第4项是

2)如果一列数……是等比数列,且公比为q,那么根据上述的规定,有

……

所以

……

.(用q的代数式表示)

3)一个等比数列的第2项是10,第3项是20,求它的第1项与第4 .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商家销售一种成本为每件元的商品.据市场调查分析,如果按每件元销售,一周能售出件;若销售单价每涨元,每周销售量就减少件.设销售单价为,一周的销售量为件.

之间的函数表达式,并写出自变量的取值范围;

设一周的销售利润为元,求关于的函数表达式,并求出商家销售该商品的最大利润;

若该商家每周投入此商品的成本不超过元,问销售单价定位多少时,销售该商品一周的利润能达到元.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】李老师为了了解学生暑期在家的阅读情况,随机调查了20名学生某一天的阅读小时数,具体情况统计如下:

阅读时间

(小时)

2

2.5

3

3.5

4

学生人数(名)

1

2

8

6

3

则关于这20名学生阅读小时数的说法正确的是(  )

A. 众数是8 B. 中位数是3 C. 平均数是3 D. 方差是0.34

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线yx2与抛物线yax2bx6(a≠0)相交于点A( )B(4m),点P是线段AB上异于AB的动点,过点PPCx轴于点D,交抛物线于点C.

(1)求抛物线的解析式;

(2)是否存在这样的P点,使线段PC的长有最大值?若存在,求出这个最大值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案