【题目】如图,有一段防洪大堤,其横断面为梯形,,斜坡的坡度,斜坡的坡度,大堤顶宽为,为了增加抗洪能力,现将大堤加高,加高部分的横断面为梯形,,点、分别在,的延长线上,当新大堤顶宽为时,大堤加高________米.
【答案】1.1
【解析】
分别过E、F作DC的垂线,设垂足为G、H;可设大坝加高了xm,在Rt△DEG和Rt△FHC中,分别用坡面的铅直高x和坡比表示出各自的水平宽,即DG、CH的长,进而可表示出DC的长,已知了DC长6m,由此可列出关于x的方程,即可求出大堤加高的高度.
作EG⊥DC,FH⊥DC,G、H分别为垂足,
∵EF∥DC,
∴∠EGH=∠FHG=∠EFH=90°,
∴四边形EFHG是矩形;
∴GH=EF=3.8,
设大堤加高xm,
则EG=FH=xm,
∵i1=,i2=,
∴DG=1.2xm,HC=0.8xm,
∵DG+GH+HC=CD=6m,
∴1.2x+3.8+0.8x=6,
解得:x=1.1.
∴大堤加高了1.1m.
故答案为:1.1.
科目:初中数学 来源: 题型:
【题目】如图①,在△ABC中,∠BAC=90°,AB=AC,直线经过点A,且BD⊥l于的D,CE⊥l于的E.
(1)求证:BD+CE=DE;
(2)当变换到如图②所示的位置时,试探究BD、CE、DE的数量关系,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线l1对应的函数表达式为y=2x-2,直线l1与x轴交于点D.直线l2:y=kx+b与x轴交于点A,且经过点B,直线l1,l2交于点C(m,2).
(1)求点D,点C的坐标;
(2)求直线l2对应的函数表达式;
(3)求△ADC的面积;
(4)利用函数图象写出关于x,y的二元一次方程组的解.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.
(1)观察猜想
图1中,线段PM与PN的数量关系是 ,位置关系是 ;
(2)探究证明
把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;
(3)拓展延伸
把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个不透明的盒子里装有30个除颜色外其它均相同的球,其中红球有m个,白球有3m个,其它均为黄球.现小李从盒子里随机摸出一个球,若是红球,则小李获胜;小李把摸出的球放回盒子里摇匀,由小马随机摸出一个球,若为黄球,则小马获胜.
(1)当m=4时,求小李摸到红球的概率是多少?
(2)当m为何值时,游戏对双方是公平的?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下列一段话,并解决后面的问题 .观察下面一例数:
1,2,4,8,……
我们发现,这一列数从第2项起,每一项与它前一项的比都等于2 .
一般地,如果一列数从第2项起,每一项与它前一项的比都等于同一个常数,这一列数就叫做等比数列,这个常数叫做等比数列的公比 .
(1)等比数列5,-15,45,……的第4项是 ;
(2)如果一列数,,,,……是等比数列,且公比为q,那么根据上述的规定,有
,,,……
所以,
,
,
……
.(用与q的代数式表示)
(3)一个等比数列的第2项是10,第3项是20,求它的第1项与第4项 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商家销售一种成本为每件元的商品.据市场调查分析,如果按每件元销售,一周能售出件;若销售单价每涨元,每周销售量就减少件.设销售单价为元,一周的销售量为件.
求与之间的函数表达式,并写出自变量的取值范围;
设一周的销售利润为元,求关于的函数表达式,并求出商家销售该商品的最大利润;
若该商家每周投入此商品的成本不超过元,问销售单价定位多少时,销售该商品一周的利润能达到元.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】李老师为了了解学生暑期在家的阅读情况,随机调查了20名学生某一天的阅读小时数,具体情况统计如下:
阅读时间 (小时) | 2 | 2.5 | 3 | 3.5 | 4 |
学生人数(名) | 1 | 2 | 8 | 6 | 3 |
则关于这20名学生阅读小时数的说法正确的是( )
A. 众数是8 B. 中位数是3 C. 平均数是3 D. 方差是0.34
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于点A(, ),B(4,m),点P是线段AB上异于A,B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.
(1)求抛物线的解析式;
(2)是否存在这样的P点,使线段PC的长有最大值?若存在,求出这个最大值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com