D
分析:根据等腰三角形的性质可求出∠C;分别得出∠ABC、∠ABD、∠CBD的度数即可判断②;利用两角法可确定等腰三角形的个数;证明△ABC∽△BDC可判断④.
解答:∵∠A=36°,AB=AC,
∴∠ABC=∠C=72°;故①正确;
∵DM是AB的中垂线,
∴DA=DB,
∴∠DBA=∠A=36°,
∴∠DBC=∠ABC-∠DBA=36°,
∴BD是∠ABC的平分线;故②正确;
等腰三角形有△ABC、△BDC、△DAB,共3个,故③正确;
∵∠CBD=∠A=36°,∠C=∠C,
∴△ABC∽△BDC,
∴

=

,即BD×BC=CD×AB,
又∵BD=BC=AD,AB=AC,
∴AD
2=CD•AC.故④正确;
综上可得①②③④正确,共4个.
故选D.
点评:本题考查了相似三角形的判定与性质、等腰三角形的性质及中垂线的性质,解答本题的关键是掌握各性质定理的内容,注意已经证明的结论在后面的证明过程可以直接使用.