精英家教网 > 初中数学 > 题目详情

【题目】甲口袋中装有2个相同的小球,它们分别写有数值;乙口袋中装有3个相同的小球,它们分别写有数值.现从甲口袋中随机取一球,记它上面的数值为,再从乙口袋中随机取一球,记它上面的数值为.设点的坐标为

1)请用树状图或列表法,列出所有可能的结果;

2)求点落在第一象限的概率.

【答案】1(1,4)(1,2)(1,3)(5,4)(5,2)(5,3)

2

【解析】

1)根据题意画出树状图,即可得到(mn)所有可能的结果;

2)由(1)中的树形图求得所有等可能的结果与点A落在第一象限的情况,再利用概率公式即可求得答案.

1)画树形图得:

由树形图可知共有(14)(12)(13)(54)(52)(53)6种可能情况;

故答案为:(14)(12)(13)(54)(52)(53)

2)由(1)可知点A落在第一象限的情况有(52)(53)两种可能,

所以点落在第一象限的概率为

故答案为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,正方形的对角线相交于点的平分线交于点,交于点.若,则____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了创建国家级卫生城区,某社区在九月份购买了甲、乙两种绿色植物共1100盆,共花费了27000元.已知甲种绿色植物每盆20元,乙种绿色植物每盆30元.

1)该社区九月份购买甲、乙两种绿色植物各多少盆?

2)十月份,该社区决定再次购买甲、两种绿色植物.已知十月份甲种绿色植物每盆的价格比九月份的价格优惠,十月份乙种绿色植物每盆的价格比九月份的价格优惠.因创卫需要,该社区十月份购买甲种绿色植物的数量比九月份的数量增加了,十为份购买乙种绿色植物的数量比九月份的数量增加了.若该社区十月份的总花费与九月份的总花费恰好相同,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(感知)“如图①,平分,作分别交射线两点,连结,求的度数”为了求解问题,某同学做了如下的分析,

“过点于点于点,”进而求解,则________

(拓展)如图②,一般地,设平分,作分别交射线两点,连结

1)求的度数.(用含的代数式表示)

2)若,则________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,一次函数的图像与反比例函数的图像交于两点,与轴交于点.

(1)的值;

(2)请直接写出不等式的解集;

(3)轴下方的图像沿轴翻折,点落在点处,连接,求的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数yax23ax+c的图象与x轴交于点AB,与y轴交于点C直线y=﹣x+4经过点BC

1)求抛物线的表达式;

2)过点A的直线交抛物线于点M,交直线BC于点N

N位于x轴上方时,是否存在这样的点M,使得AMNM53?若存在,求出点M的坐标;若不存在,请说明理由.

连接AC,当直线AM与直线BC的夹角∠ANB等于∠ACB2倍时,请求出点M的横坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m名学生,并将其结果绘制成如下不完整的条形图和扇形图.

请结合以上信息解答下列问题:

(1)m=

(2)请补全上面的条形统计图;

(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为

(4)已知该校共有1200名学生,请你估计该校约有 名学生最喜爱足球活动.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线轴交于两点,与轴交于点,抛物线的对称轴与轴交于点,顶点坐标为.

1)求抛物线的表达式和顶点的坐标;

2)如图1,点为抛物线上一点,点不与点重合,当时,过点轴,交抛物线的对称轴于点,作轴于点H,得到矩形,求矩形的周长的最大值;

3)如图2,点为抛物线对称轴上一点,是否存在点,使以点为顶点的三角形是直角三角形?若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)如图①,四边形 ABCD 是正方形,点 GBC 上的任意一点,BF AG 于点 FDE AG于点 E,探究 BFDEEF 之间的数量关系.第一学习小组合作探究后,得到DEBF= EF,请证明这个结论;

(2)若(1)中的点 GCB 的延长线上,其余条件不变,请在图②中画出图形,并直接写出此时 BFDEEF 之间的数量关系;

(3)如图 ③ ,四边形 ABCD 内接于 ⊙OAB=AD,EFAC 上的两点,且满足∠AED=∠BFA=∠BCD.试判断 ACDEBF 之间的数量关系,并说明理由.

查看答案和解析>>

同步练习册答案