【题目】如图,抛物线与轴交于,两点,与轴交于点,抛物线的对称轴与轴交于点,顶点坐标为.
(1)求抛物线的表达式和顶点的坐标;
(2)如图1,点为抛物线上一点,点不与点重合,当时,过点作轴,交抛物线的对称轴于点,作轴于点H,得到矩形,求矩形的周长的最大值;
(3)如图2,点为抛物线对称轴上一点,是否存在点,使以点、、为顶点的三角形是直角三角形?若存在,求出点的坐标;若不存在,请说明理由.
【答案】(1),顶点坐标;(2)周长的最大值为;(3)存在,P的坐标为,,,.
【解析】
(1)把A、B坐标代入y=-x2+bx+c,解方程组求出b、c的值即可得答案;(2)设矩形的周长为,,分别讨论-7<x<-3时和-3<x<-2时两种情况,用x表示出矩形的周长,根据二次函数的性质求出最大值即可得答案;(3)设分时,时,时,三种情况讨论,利用勾股定理求出m的值即可得答案.
(1)把两点坐标代入
得,
解得:,
∴抛物线方程为:,顶点坐标,
(2)
如图1,设矩形的周长为,,
∴,
∵A(-7,0),B(1,0),
∴抛物线对称轴为直线x=-3,
①当时,
,
,
=
=
=
=
∵,
∴时,矩形周长最大,最大值为.
②当时
EF=x-(-3)=x+3,
l=
=
.
∴当时,矩形周长最大,最大值为
∴综上所述,周长的最大值为
(3)存在.如下图
设
(i)当时,
16+
16
2
m2
解得:
∴P1,P2
(ii)当时,
49+49+9+(7-m)2=16+m2
∴
140=14m,
m=10,
∴P3,
(iii)当时,
98+16+m2=9+(7-m)2
49+49+16+m2=9+49-14m+m2
56=-14m
解得:,
∴P4
综上所述:满足条件的点P的坐标为,,,
科目:初中数学 来源: 题型:
【题目】在中,,,以为边在的另一侧作,点为射线上任意一点,在射线上截取,连接、、.
(1)如图1,当点落在线段的延长线上时,求的度数;
(2)如图2,当点落在线段(不含边界)上时,与交于点,请问(1)中的结论是否仍成立?如果成立,请给出证明;如果不成立,请说明理由;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲口袋中装有2个相同的小球,它们分别写有数值;乙口袋中装有3个相同的小球,它们分别写有数值.现从甲口袋中随机取一球,记它上面的数值为,再从乙口袋中随机取一球,记它上面的数值为.设点的坐标为.
(1)请用树状图或列表法,列出所有可能的结果;
(2)求点落在第一象限的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】科幻小说《实验室的故事》中,有这样一个情节,科学家把一种珍奇的植物分别放在不同温度的环境中,经过一天后,测试出这种植物高度的增长情况(如表):
温度 | …… | 0 | 2 | 4 | 4.5 | …… | ||
植物每天高度增长量 | …… | 41 | 49 | 49 | 41 | 25 | 19.75 | …… |
由这些数据,科学家推测出植物每天高度增长量是温度的函数,且这种函数是一次函数和二次函数中的一种.
(1)请你选择一种适当的函数,求出它的函数关系式,并简要说明不选择另外一种函数的理由;
(2)如果实验室温度保持不变,在10天内要使该植物高度增长量的总和超过,那么实验室的温度应该在哪个范围内选择?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在数轴上,点A表示1,现将点A沿数轴做如下移动,第一次将点A向左移动3个单位长度到达点A1,第二次将点A1向右移动6个单位长度到达点A2,第三次将点A2向左移动9个单位长度到达点A3,…按照这种移动规律进行下去,第51次移动到点A51,那么点A51所表示的数为( )
A. ﹣74 B. ﹣77 C. ﹣80 D .﹣83
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一组等距的平行线,点A、B、C分别在直线l1、l6、l4上,AB交l3于点D,AC交l3于点E,BC交于l5点F,若△DEF的面积为1,则△ABC的面积为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC的三个顶点分别为A(1,2),B(2,5),C(6,1).若函数y=在第一象限内的图象与△ABC有交点,则k的取值范围是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(2016广西贺州市)如图,将线段AB绕点O顺时针旋转90°得到线段A′B′,那么A(﹣2,5)的对应点A′的坐标是( )
A. (2,5) B. (5,2) C. (2,﹣5) D. (5,﹣2)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,若折叠矩形的一边,使点落在边的点处,已知折痕且.以为原点,所在直线为轴建立如图所示的平面直角坐标系,抛物线经过点.
(1)求的值;
(2)点是线段上一动点,点在抛物线上,且始终满足,在点运动过程中,能否使得?若能,求出所有符合条件的点的坐标;若不能,请说明理由;
(3)已知点是拋物线上一动点,点在的延长线上,且,若在轴上存在一点,使有最小值,求点的纵坐标的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com