精英家教网 > 初中数学 > 题目详情

如图,在平面直角坐标系中,O为原点,已 知A(2,0)、C(1,数学公式),将△OAC绕AC的中点旋转180°,点O落到点B的位置,抛物线数学公式经过点A,点D是抛物线的顶点.
(1)求抛物线的解析式;
(2)判断点B是否在抛物线上;
(3)若点P是线段OA上的点,且∠APD=∠OAB,求点P的坐标;
(4)若点P是x轴上的点,以P、A、D为平行四边形的三个顶点作平行四边形,使该平行四边形的另一个顶点在y轴上,请直接写出点P的坐标.

解:(1)∵抛物线y=ax2-2x经过点A(2,0),
∴4a-4=0,
解得a=
∴抛物线的解析式为y=x2-2x;

(2)∵将△OAC绕AC的中点旋转180°,点O落到点B的位置,
∴△ACO≌△CAB,
∴AO=CB,CO=AB,
∴四边形OABC是平行四边形,
∴BC∥OA,且BC=OA.
∵A(2,0)、C(1,),
∴xB=xC+2=3,yB=yC=3
∴B(3,3).
将B(3,3)代入y=x2-2x,等式成立,
∴点B在抛物线上;

(3)分别过点B、D作x轴的垂线,垂足分别为E、F,
由y=x2-2x,可求得顶点D的坐标为(1,-),
∵B(3,3),
∴在Rt△BOE和Rt△DAF中,
tan∠BOE=
tan∠DAF=
∴∠BOE=∠DAF=60°,
又∵∠APD=∠OAB,
∴△APD∽△OAB,

∵OA=2,


∴P(,0);

(4)设以P、A、D为平行四边形的第四个顶点为Q,分三种情况进行讨论:

①如图1,以DP为对角线,此时QD=AP=1,因此OP=OA-AP=2-1=1,P点的坐标为(1,0);
②如图2,以AD为对角线,此时QD=AP=1,因此OP=OA+AP=2+1=3,P点的坐标为(3,0);
③如图3,以AP为对角线,此时D,Q两点的纵坐标互为相反数,因此Q点的坐标为(0,),由于AD与PQ平行且相等,将A点先向左平移1个单位,再向下平移个单位得到点D,所以将Q点先向左平移1个单位,再向下平移个单位得到点P,P点的坐标为(0-1,-),即(-1,0).
因此共有3个符合条件的P点,其坐标为:(-1,0)或(1,0)或(3,0).
分析:(1)将A点的坐标代入y=ax2-2x,即可得出抛物线的解析式;
(2)先根据旋转的性质得出四边形OABC是平行四边形,OA=2,因此将C点向右平移2个单位即可得出B点的坐标,然后将B点的坐标代入抛物线的解析式中即可判断出B是否在抛物线上;
(3)先根据二次函数的性质求出顶点D的坐标,然后求出OB、AD的长,当∠APD=∠OAB时,可得出△APD∽△OAB,进而可得出关于AP,AD、OA、OB的比例关系式.设出P点的坐标,然后用P的横坐标表示出AP的长,即可根据上面的比例关系式求出P点的坐标;
(4)根据平行四边形的性质,分别以AP,AD,DP为对角线分三种情况进行分析即可求得答案.
点评:本题是二次函数的综合题型,其中涉及到运用待定系数法求二次函数的解析式,二次函数图象上点的坐标特征,旋转的性质,相似三角形的判定与性质,平行四边形的性质等知识,综合性较强,运用分类讨论、数形结合的思想方法是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案