精英家教网 > 初中数学 > 题目详情

【题目】已知:如图,在△ABC中,∠B=90°AB=5cmBC=7cm.点P从点A开始沿AB边向点B1cm/s的速度移动,点Q从点B开始沿BC边向点C2cm/s的速度移动.如果PQ分别从AB同时出发.

(1)几秒后,△PBQ的面积等于6cm2

(2)几秒后,四边形APQC的面积最小?最小值是多少?

【答案】1)经过2秒或3秒钟,的面积等于22.5秒后,四边形APQC的面积最小,最小值是.

【解析】

1)用t表示,根据面积公式列出关于t的方程并解出,再结合实际情况进行检验;

2)根据四边形APQC的面积等于△ABC面积减去△PBQ的面积,建立二次函数模型,在范围内求最小值即可.

解:(1)设经过t秒钟,的面积等于,则
根据题意得:
整理得:
解得:


答:经过2秒或3秒钟,的面积等于6

2)设四边形APQC的面积为y,则

∵抛物线对称轴为直线,开口向上,

∴当时,图象先降后升,

∴当时,y最小

答:2.5秒后,四边形APQC的面积最小,最小值是.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,ABC中,D是边BC的中点,EAB边上一点,且ADCEOADACCE

1)求证:∠B45°

2)求的值;

3)直接写出的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知一次函数y=kx+b的图象与x轴交于点A,与反比例函数x0)的图象交于点B(﹣2,n),过点BBCx轴于点C,点D(3﹣3n,1)是该反比例函数图象上一点.

(1)求m的值;

(2)若DBC=∠ABC,求一次函数y=kx+b的表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商店以固定进价一次性购进一种商品,3月份按一定售价销售,销售额为2400元,为扩大销量,减少库存,4月份在3月份售价基础上打9折销售,结果销售量增加30件,销售额增加840元.

(1)求该商店3月份这种商品的售价是多少元?

(2)如果该商店3月份销售这种商品的利润为900元,那么该商店4月份销售这种商品的利润是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某超市拟于中秋节前天里销售某品牌月饼,其进价为/.设第天的销售价格为(元/),销售量为.该超市根据以往的销售经验得出以下的销售规律:①当时,;当时,满足一次函数关系,且当时,时,.②的关系为

1)当时,的关系式为   

2为多少时,当天的销售利润(元)最大?最大利润为多少?

3)若超市希望第天到第天的日销售利润(元)随的增大而增大,则需要在当天销售价格的基础上涨/,求的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法正确的是

A.袋中有形状、大小、质地完全一样的5个红球和1个白球,从中随机抽出一个球,一定是红球

B.天气预报“明天降水概率10%”,是指明天有10%的时间会下雨

C.某地发行一种福利彩票,中奖率是千分之一,那么,买这种彩票1000张,一定会中奖

D.连续掷一枚均匀硬币,若5次都是正面朝上,则第六次仍然可能正面朝上

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】台州人民翘首以盼的乐清湾大桥于2018928日正式通车,经统计分析,大桥上的车流速度(千米/小时)是车流密度(辆/千米)的函数,当桥上的车流密度达到220/千米的时候就造成交通堵塞,此时车流速度为0千米/小时;当车流密度不超过20/千米,车流速度为80千米/小时,研究证明:当时,车流速度是车流密度的一次函数.

1)求大桥上车流密度为50/辆千米时的车流速度;

2)在某一交通高峰时段,为使大桥上的车流速度大于60千米/小时且小于80千米/小时,应把大桥上的车流密度控制在什么范围内?

3)车流量(辆/小时)是单位时间内通过桥上某观测点的车辆数,即:车流量车流速度车流密度,求大桥上车流量的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC是等边三角形,点DAC边上一点,连接BD,以BD为边在AB的左侧作等边△DEB,连接AE,求证:AB平分∠EAC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若数a使关于x的不等式组至少有3个整数解,且使关于y的分式方程2有非负整数解,则满足条件的所有整数a的和是(  )

A. 14B. 15C. 23D. 24

查看答案和解析>>

同步练习册答案