【题目】定义为函数的特征数,下面给出特征数为的函数的一些结论:
①当时,函数图象的顶点坐标是;
②当时,函数图象截轴所得的线段长度大于;
③当时,函数在时,随的增大而减小;
④当时,函数图象经过同一个点.
其中正确的结论有( )
A. ①②③④ B. ①②④ C. ①③④ D. ②④
【答案】B
【解析】
①当m=-3时,根据函数式的对应值,可直接求顶点坐标;②当m>0时,直接求出图象与x轴两交点坐标,再求函数图象截x轴所得的线段长度,进行判断;③当m<0时,根据对称轴公式,进行判断;④当m≠0时,函数图象经过同一个点.
根据定义可得函数y=2mx2+(1-m)x+(-1-m),
①当m=-3时,函数解析式为y=-6x2+4x+2,
∴=,,
∴顶点坐标是(),正确;
②函数y=2mx2+(1-m)x+(-1-m)与x轴两交点坐标为(1,0),(-,0),
当m>0时,1-(-)=>,正确;
③当m<0时,函数y=2mx2+(1-m)x+(-1-m)开口向下,对称轴x=,错误;
④当m≠0时,x=1代入解析式y=0,则函数一定经过点(1,0),正确,
故选B.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,M为AB中点.将△ACM沿CM翻折,得到△DCM(如图2),P为CD上一点,再将△DMP沿MP翻折,使得D与B重合(如图3),给出下列四个命题:
①BP∥AC;②△PBC≌△PMC;③PC⊥BM;④∠BPC=∠BMC.
其中真命题的个数是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF.
(1)求证:AD平分∠BAC;
(2)直接写出AB+AC与AE之间的等量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等边,点为射线上一点,延长至点,使得,联结并延长交射线于点。
(1)当点在边上时,如图1,若,则
(2)当点在边上时,如图2,若,则(1)的结论还成立吗?若成立,请证明;若不成立,写出与的数量关系并证明。
(3)当点在边的延长线上时,则(1)的结论还成立吗?若成立,请证明;若不成立,写出与的数量关系并证明。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,一次函数的图象过点A(4,1)与正比例函数()的图象相交于点B(,3),与轴相交于点C.
(1)求一次函数和正比例函数的表达式;
(2)若点D是点C关于轴的对称点,且过点D的直线DE∥AC交BO于E,求点E的坐标;
(3)在坐标轴上是否存在一点,使.若存在请求出点的坐标,若不存在请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角坐标系中,正方形的中心在原点,且正方形的一组对边与轴平行.点是反比例幽数的图象上与正方形的一个交点,若图中阴影部分的面积等于,则的值为( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数的图象与反比例函数的图象交于点﹙,﹚,﹙,﹚,交轴于点,交轴于点.
求反比例函数和一次函数的表达式;
连接,,求的面积;
根据图象写出使一次函数的值小于反比例函数的值的的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知,则在下列条件:①∠C=∠D ②AC=AD ③∠CBA=∠DBA ④BC=BD中任选一个能判定△ABC≌△ABD的是( )
A. ①②③④ B. ②③④ C. ①③④ D. ①②③
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com