精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,∠ABC=2∠C,∠BAC的平分线AD交BC于D,E为AC上一点,AE=AB,连接DE.

(1)求证:△ABD≌△AED;

(2)已知BD=5,AB=9,求AC长.

【答案】(1)证明见解析; (2)AC=14

【解析】

试题(1)由AD是∠BAC的平分线,得出∠BAD=DAC,根据已知条件可证ABD≌△AED

(2)由ABD≌△AED BD=DEB=AED,再利用三角形外角的性质求证CE=DE,然后问题可解.

试题解析:(1)∵∠BAC的平分线ADBC边于点D
∴∠BAD=∠DAC
在△ABD与△AED中,


∴△ABD≌△AED(SAS);

(2)ABD≌△AED
BD=DEB=AED
∵∠B=2CAED=C+EDC
∴∠AED=2C
∴∠C=EDC
CE=DE
CE=BD
AC=AE+EC=AB+BD

BD=5,AB=9

AC=14.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为满足市场需求,新生活超市在端午节前夕购进价格为3元/个的某品牌粽子,根据市场预测,该品牌粽子每个售价4元时,每天能出售500个,并且售价每上涨0.1元,其销售量将减少10个,为了维护消费者利益,物价部门规定,该品牌粽子售价不能超过进价的200%,请你利用所学知识帮助超市给该品牌粽子定价,使超市每天的销售利润为800元.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读理解:如图1,在平面内选一定点O,引一条有方向的射线Ox,再选定一个单位长度,那么平面上任一点M的位置可由∠MOx的度数θ与OM的长度m确定,有序数对(θ,m)称为M点的“极坐标”,这样建立的坐标系称为“极坐标系”. 应用:在图2的极坐标系下,如果正六边形的边长为2,有一边OA在射线Ox上,则正六边形的顶点C的极坐标应记为(

A.(60°,4)
B.(45°,4)
C.(60°,2
D.(50°,2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方

向依次不断移动,每次移动1个单位,其行走路线如下图所示.

(1)填写下列各点的坐标:A4( )A8( )A12( )

(2)写出点A4n的坐标(n是正整数)

(3)指出蚂蚁从点A100到点A101的移动方向.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是用大小相等的小正方形按一定规律拼成的则第10个图形是_________个小正方形,第n 个图形是___________个小正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公交公司有A,B型两种客车,它们的载客量和租金如下表:

A

B

载客量(/)

45

30

租金(/)

400

280

红星中学根据实际情况,计划租用A,B型客车共5辆,同时送七年级师生到基地参加社会实践活动,设租用A型客车x辆,根据要求回答下列问题:

(1)用含x的式子填写下表:

车辆数()

载客量()

租金()

A

x

45x

400x

B

5-x

(2)若要保证租车费用不超过1900元,求x的最大值;

(3)(2)的条件下,若七年级师生共有195人,写出所有可能的租车方案,并确定最省钱的租车方案.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,6个形状、大小完全相同的菱形组成网格,已知菱形的一个角∠O为60°,A,B,C都在格点上,则tan∠ABC的值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了传承优秀传统文化,我市组织了一次初三年级1 200名学生参加的汉字听写大赛,为了更好地了解本次大赛的成绩分布情况,随机抽取了100名学生的成绩(满分50),整理得到如下的统计图表:

成绩()

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

人数

1

2

3

3

6

7

5

8

15

9

11

12

8

6

4

成绩分组

频数

频率(百分比)

35≤x<38

3

0.03

38≤x<41

a

0.12

41≤x<44

20

0.20

44≤x<47

35

0.35

47≤x≤50

30

b

请根据所提供的信息解答下列问题:

(1)频率统计表中a________b_______

(2)请补全频数分布直方图;

(3)请根据抽样统计结果,估计该次大赛中成绩不低于41分的学生有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】关于x的方程x2+(2k+1)x+k2+2=0有两个实数根x1、x2
(1)求实数k的取值范围;
(2)若x1、x2满足|x1|+|x2|=|x1x2|﹣1,求k的值.

查看答案和解析>>

同步练习册答案