【题目】如图,在平面直角坐标系中Rt△ABC的斜边BC在x轴上,点B坐标为(1,0),AC=2,∠ABC=30°,把Rt△ABC先绕B点顺时针旋转180°,然后再向下平移2个单位,则A点的对应点A′的坐标为( )
A. (﹣4,﹣2﹣) B. (﹣4,﹣2+) C. (﹣2,﹣2+) D. (﹣2,﹣2﹣)
科目:初中数学 来源: 题型:
【题目】定义:若以一条线段为对角线作正方形,则称该正方形为这条线段的“对角线正方形”.例如,图①中正方形ABCD即为线段BD的“对角线正方形”.如图②,在△ABC中,∠ABC=90°,AB=3cm,BC=4cm,点P从点C出发,沿折线CA﹣AB以5cm/s的速度运动,当点P与点B不重合时,作线段PB的“对角线正方形”,设点P的运动时间为t(s),线段PB的“对角线正方形”的面积为S(cm2).
(1)如图③,借助虚线的小正方形网格,画出线段AB的“对角线正方形”.
(2)当线段PB的“对角线正方形”有两边同时落在△ABC的边上时,求t的值.
(3)当点P沿折线CA﹣AB运动时,求S与t之间的函数关系式.
(4)在整个运动过程中,当线段PB的“对角线正方形”至少有一个顶点落在∠A的平分线上时,直接写出t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学七年级A班有50人,某次活动中分为三组,第一组有(3a+4b+2)人,第二组比第一组的一半多6人.
(1)求第三组的人数;(用含a,b的整式表示)
(2)试判断当a=1,b=2时,是否满足题意.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面是小明设计的“作平行四边形ABCD的边AB的中点”的尺规作图过程.
已知:平行四边形ABCD.
求作:点M,使点M 为边AB 的中点.
作法:如图,
①作射线DA;
②以点A 为圆心,BC长为半径画弧,
交DA的延长线于点E;
③连接EC 交AB于点M .
所以点M 就是所求作的点.
根据小明设计的尺规作图过程,
(1)使用直尺和圆规,补全图形 (保留作图痕迹);
(2)完成下面的证明.
证明:连接AC,EB.
∵四边形ABCD 是平行四边形,
∴AE∥BC.
∵AE= ,
∴四边形EBCA 是平行四边形( )(填推理的依据) .
∴AM =MB ( )(填推理的依据) .
∴点M 为所求作的边AB的中点.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】近期,中宣部、国家发改委发出开展节俭养德全民节约行动的通知,在全社会营造厉行节约、拒绝浪费的浓厚氛围,我市某中学为了解该校学生家庭月均用电量情况,给学生布置了收集自己家中月均用电量数据的课外作业,学校随机抽取了1000名学生家庭月均用电量的数据,并将调查数据整理如下:
月均用电量a/度 | 频数/户 | 频率 |
0≤a<50 | 120 | 0.12 |
50≤a<100 | 240 | n |
100≤a<150 | 300 | 0.30 |
150≤a<200 | m | 0.16 |
200≤a<250 | 120 | 0.12 |
250≤a<300 | 60 | 0.06 |
合 计 | 1000 | 1 |
(1)频数分布表中的m=_____,n=_____;
(2)补全频数分布直方图;
(3)被调查的1000名学生家庭月均用电量的众数落在哪一个范围?
(4)求月均用电量小于150度的家庭数占被调查家庭总数的百分比.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在中,AB=AC,∠ABC =,D是BC边上一点,以AD为边作,使AE=AD,+=180°.
(1)直接写出∠ADE的度数(用含的式子表示);
(2)以AB,AE为边作平行四边形ABFE,
①如图2,若点F恰好落在DE上,求证:BD=CD;
②如图3,若点F恰好落在BC上,求证:BD=CF.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】体育课上,甲、乙两个小组进行定点投篮对抗赛,每组10人,每人投10次.下表是甲组成绩统计表:
投进个数 | 10个 | 8个 | 6个 | 4个 |
人数 | 1个 | 5人 | 2人 | 2人 |
(1)请计算甲组平均每人投进个数;
(2)经统计,两组平均每人投进个数相同且乙组成的方差为3.2.若从成绩稳定性角度看,哪一组表现更好?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=﹣x2+bx+c与x轴分别交于点A、B,与y轴交于点C,且OA=1,OB=3,顶点为D,对称轴交x轴于点Q.
(1)求抛物线对应的二次函数的表达式;
(2)点P是抛物线的对称轴上一点,以点P为圆心的圆经过A、B两点,且与直线CD相切,求点P的坐标;
(3)在抛物线的对称轴上是否存在一点M,使得△DCM∽△BQC?如果存在,求出点M的坐标;如果不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com