【题目】如图,在四边形ABCD中,BD平分∠ABC,∠BAD=∠BDC=90°,E为BC的中点,AE与BD相交于点F.若BC=4,∠CBD=30°,则DF的长为____
【答案】
【解析】
先在Rt△BDC中,利用锐角三角函数求出BD,再利用直角三角形的性质求出DE=BE=2,即:∠BDE=∠ABD,进而判断出DE∥AB,再求出AB=3,即可得出结论.
在Rt△BDC中,BC=4,∠DBC=30°,
∴cos∠DBC=cos30°
∴BD=2,
连接DE,
∵∠BDC=90°,点E是BC中点,
∴DE=BE=CE=BC=2,
∵∠DCB=30°,
∴∠BDE=∠DBC=30°,
∵BD平分∠ABC,
∴∠ABD=∠DBC,
∴∠ABD=∠BDE,
∴DE∥AB,
∴△DEF∽△BAF,
∴,
在Rt△ABD中,∠ABD=30°,BD=2
∴AB=3,
∴,
∴,
∴DF=,
故答案是:
科目:初中数学 来源: 题型:
【题目】问题:如图1,△ABC中,AB=a,∠ACB=α.如何用直尺和圆规作出点P,均使得∠APB=α?(不需解答)
尝试:如图2,△ABC中,AC=BC,∠ACB=90°.
(1)请用直角三角尺(仅可画直角或直线)在图2中画出一个点P,使得∠APB=45°
(2)如图3,若AC=BC=,以点A为原点,直线AB为x轴,过点A垂直于AB的直线为y轴建立平面直角坐标系,直线y=(b≥0)交x轴于点M,交y轴与点N.
①当b=7+时,请仅用圆规在射线MN上作出点P,使得∠APB=45°;
②请直接写出射线MN上使得∠APB=45°或∠APB=135°时点P的个数及相应的b的取值范围;
③应用:如图4,△ABC中,AB=a,∠ACB=α,请用直尺和圆规作出点P,使得∠APB=α,且AP+BP最大,请简要说明理由.(不写作法,保留作图痕迹)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=kx+b(k,b为常数,k≠0)的图象与反比例函数的图象交于A、B两点,且与x轴交于点C,与y轴交于点D,A点的横坐标与B点的纵坐标都是3.
(1)求一次函数的表达式;
(2)求△AOB的面积;
(3)写出不等式kx+b>﹣的解集.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知⊙O的直径AB=10,弦AC=6,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC交AC的延长线于点E.
(1)求证:DE是⊙O的切线.
(2)求DE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AD是⊙O的直径,AB为⊙O的弦,OP⊥AD,OP与AB的延长线交于点P,过B点的切线交OP于点C.
(1)求证:∠CBP=∠ADB;
(2)若OA=4,AB=2,求线段BP的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知抛物线y=x2+bx+c过A,B,C三点,点A的坐标是(3,0),点C的坐标是(0,-3),动点P在抛物线上.
(1)b =_________,c =_________,点B的坐标为_____________;(直接填写结果)
(2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;
(3)过动点P作PE垂直y轴于点E,交直线AC于点D,过点D作x轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O是△ABC的外接圆,AE平分∠BAC交⊙O于点E,交BC于点D,过点E做直线l∥BC.
(1)判断直线l与⊙O的位置关系,并说明理由;
(2)若∠ABC的平分线BF交AD于点F,求证:BE=EF;
(3)在(2)的条件下,若DE=4,DF=3,求AF的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com