精英家教网 > 初中数学 > 题目详情
8.(1)计算:(1-$\sqrt{3}$)0+|-$\sqrt{2}$|-2cos45°+($\frac{1}{4}$)-1
(2)解不等式组$\left\{\begin{array}{l}{3x>x-2}\\{\frac{x+1}{3}>2x}\end{array}\right.$.

分析 (1)本题涉及零指数幂、绝对值、负整数指数幂、特殊角的三角函数值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.
(2)首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.

解答 解:(1)(1-$\sqrt{3}$)0+|-$\sqrt{2}$|-2cos45°+($\frac{1}{4}$)-1
=1+$\sqrt{2}$-2×$\frac{\sqrt{2}}{2}$+4
=1+$\sqrt{2}$-$\sqrt{2}$+4
=5;
(2)$\left\{\begin{array}{l}{3x>x-2①}\\{\frac{x+1}{3}>2x②}\end{array}\right.$,
解①得:x>-1,
解②得:x<$\frac{1}{5}$.
故不等式组的解集是:-1<x<$\frac{1}{5}$.

点评 本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握零指数幂、绝对值、负整数指数幂、特殊角的三角函数值等考点的运算.同时考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,确定解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

18.AB,CD是⊙O的两条弦,直线AB,CD互相垂直,垂足为点E,连接AD,过点B作BF⊥AD,垂足为点F,直线BF交直线CD于点H.
(1)如图1,当点E在⊙O外时,连接BC,求证:BE平分∠HBC;
(2)如图2,当点E在⊙O内时,连接AC,AG,求证:EC=EH;
(3)如图3,在(2)条件下,若CH=DH,AH=$2\sqrt{17}$,tan∠D=$\frac{4}{3}$,求线段BF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,已知AB⊥BC,EF⊥BC,∠1=∠2,根据推理的依据填空:
∵AB⊥BC(已知)
∴∠ABC=90°(垂直的定义)
∵EF⊥BC(已知)
∴∠EFC=90°(垂直的定义)
∴∠ABC=∠EFC(等量代换)
∴EF∥AB(同位角相等,两直线平行)
∴∠1=∠2(已知)
∴EF∥CD(内错角相等,两直线平行)
∴AB∥CD(同一平面内平行于一直钱的两直线平行)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.计算
(1)$\sqrt{27}+\sqrt{\frac{1}{8}}-\sqrt{18}-3\sqrt{12}$
(2)${(\sqrt{3}-2)^{2010}}•{(\sqrt{3}+2)^{2011}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.定义:如果一个点能与另外两个点构成直角三角形,则称这个点为另外两个点的勾股点.例如:在矩形OBCD中,点C是O、B两点的一个勾股点(如图1所示).
问题(1):如图1,在矩形OBCD中,OD=4,DC边上取一点E,DE=8.若点E是O、B两点的勾股点(点E不与点C重合),求OB的长;
问题(2):如图2,在矩形OBCD中,OD=4,OB=12,在OB边上取一点F,使OF=5,DC边上取一点E,使DE=8.点P为DC边上一动点,过点P作直线PQ∥OD交OB边于点Q.设DP=t(t>0).
①当点P在线段DE之间时,以EF为直径的圆与直线PQ相切,求t的值;
②若直PQ上恰好存在两个点是E、F两点的勾股点时,请直接写出求t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,CD是∠ACB的平分线,∠EDC=25°,∠A=60°,∠B=70°,
(1)证明:DE∥BC;
(2)求∠BDC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.计算:
(1)$\sqrt{3}$($\sqrt{2}-\sqrt{3}$)-$\sqrt{24}$-|$\sqrt{6}$-3|;
(2)(3$\sqrt{18}$+$\frac{1}{5}$$\sqrt{50}$-4$\sqrt{\frac{1}{2}}$)÷$\sqrt{32}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.计算:
(1)($\sqrt{6}$+2$\sqrt{8}$)$\sqrt{3}$
(2)$\sqrt{1\frac{2}{3}}$$÷\sqrt{2\frac{1}{3}}$×$\sqrt{1\frac{2}{5}}$
(3)(5$\sqrt{2}$-2$\sqrt{5}$)2
(4)(4$\sqrt{6}$-4$\sqrt{\frac{1}{2}}$+3$\sqrt{8}$)$÷2\sqrt{2}$
(5)$\sqrt{24}$×$\sqrt{\frac{1}{3}}$-4×$\sqrt{\frac{1}{8}}$×$(1-\sqrt{2})^{0}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.(1)计算:|-3|+$\sqrt{3}$•tan30°-$\root{3}{8}$-(2016-π)0+(-$\frac{1}{3}$)-2
(2)解不等式组$\left\{\begin{array}{l}{3(x-4)+2≤5}\\{2x-3>1}\end{array}\right.$,并把其解集在数轴上表示出来.

查看答案和解析>>

同步练习册答案