精英家教网 > 初中数学 > 题目详情

【题目】如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN为等边三角形,则满足上述条件的△PMN有(
A.1个
B.2个
C.3个
D.3个以上

【答案】D
【解析】解:如图在OA、OB上截取OE=OF=OP,作∠MPN=60°.
∵OP平分∠AOB,
∴∠EOP=∠POF=60°,
∵OP=OE=OF,
∴△OPE,△OPF是等边三角形,
∴EP=OP,∠EPO=∠OEP=∠PON=∠MPN=60°,
∴∠EPM=∠OPN,
在△PEM和△PON中,

∴△PEM≌△PON.
∴PM=PN,∵∠MPN=60°,
∴△PNM是等边三角形,
∴只要∠MPN=60°,△PMN就是等边三角形,
故这样的三角形有无数个.
故选D.
如图在OA、OB上截取OE=OF=OP,作∠MPN=60°,只要证明△PEM≌△PON即可推出△PMN是等边三角形,由此即可对称结论.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AD是高,在线段DC上取一点E,使DE=BD,已知AB+BD=DC. 求证:E点在线段AC的垂直平分线上.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】方程x2﹣2x﹣3=0的根的情况是(
A.有两个不相等的实数根
B.有两个相等的实数根
C.没有实根
D.有一个实根

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下面的多项式中,能因式分解的是(  )
A.m2﹣2m+1
B.m2﹣m+1
C.m2﹣n
D.m2+n

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列各式不能分解因式的是(  )
A.3x2﹣4x
B.x2+y2
C.x2+2x+1
D.9﹣x2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在四边形ABCD中,AD∥BC,DB=DC=EC,∠A=2∠ADB,AD=m,AB=n.

(1)在图1中找出与∠ABD相等的角,并加以证明;

(2)求BE的长;

(3)将△ABD沿BD翻折,得到△A′BD.若点A′恰好落在EC上(如图2),求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图为二次函数y=ax2+bx+c(a≠0)的图象,则下列说法:①a>0 ②2a+b=0 ③a+b+c>0 ④当﹣1<x<3时,y>0,其中正确的个数为(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点A(-3+a2a+9)y轴上,则点A的坐标是__________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】高铁的开通,给N市市民出行带来了极大的方便,“元旦”期间,甲、乙两人应邀到A市的艺术馆参加演出,甲乘私家车从N市出发1小时后,乙乘坐高铁从N市出发,先到A市火车站,然后再转乘出租车到A市的艺术馆(换车时间忽略不计),两人恰好同时到达A市的艺术馆,他们离开N市的距离y(千米)与乘车时间x(小时)的关系如图所示,请结合图象解答下列问题:

(1)高铁的平均速度是每小时多少千米?

(2)分别求甲、乙(乘坐高铁时)两人离开N市的距离y与乘车时间x的函数关系式;

(3)若甲要提前30分钟到达艺术馆,那么私家车的速度必须达到多少千米/小时?

查看答案和解析>>

同步练习册答案