【题目】如图,在⊙O 的内接△ABC 中,∠ABC=30°,AC 的延长线与过点 B 的⊙O 的切线相交于点 D,若⊙O 的半径 OC=1,BD∥OC,则 CD 的长为( )
A. 1+ B. C. D.
【答案】B
【解析】
作辅助线OB、CE构建正方形CEBO.根据圆周角定理(同弧所对的圆周角是所对的圆心角的一半)求得∠OAC=2∠ABC=60°,然后由切线的性质及平行线的性质求得OB⊥OC,OB⊥BD;再根据圆的半径都相等知OB=OC,所以判定四边形CEBO是正方形,然后在直角三角形CDE中利用正弦三角函数sin∠D=sin60°求CD的长度并作出选择.
连接OB,过点C作CE⊥BD于点E,
∵∠ABC=30°,
∴∠AOC=60°(同弧所对的圆周角是所对的圆心角的一半);
∵OA=OC(⊙O的半径),
∴∠ACO=∠OAC=60°(等边对等角),
又BD∥OC,
∴∠ACO=∠D=60°(两直线平行,同位角相等),
∴∠OCD=120°(两直线平行,同旁内角互补),
∵BD是⊙O的切线,
∴OB⊥OC,OB⊥BD,
又∵OB=OC,
∴四边形CEBO是正方形,
∴CE=OB=1,
∴CD==,
故选:B.
科目:初中数学 来源: 题型:
【题目】如图,过锐角△ABC的顶点A作DE∥BC,AB恰好平分∠DAC,AF平分∠EAC交BC的延长线于点F.在AF上取点M,使得AM=AF,连接CM并延长交直线DE于点H.若AC=2,△AMH的面积是,则的值是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知函数y=(n+1)xm+mx+1﹣n(m,n为实数)
(1)当m,n取何值时,此函数是我们学过的哪一类函数?它一定与x轴有交点吗?请判断并说明理由;
(2)若它是一个二次函数,假设n>﹣1,那么:
①当x<0时,y随x的增大而减小,请判断这个命题的真假并说明理由;
②它一定经过哪个点?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在Rt△ABC中,∠ABC=90°,AB=BC,E、M分别为AB、AC上的点,连接CE,BM交于点G,且BM⊥CE,O为AC的中点,连接BO交CE于点N.
(1)如图①,若AB=6,2MO=AM,求BM的长;
(2)如图②,连接OG、AG,若AG⊥OG,求证:AC=BG.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在4件同型号的产品中,有1件不合格品和3件合格品.
(1)从这4件产品中随机抽取1件进行检测,不放回,再随机抽取1件进行检测.请用列表法或画树状图的方法,求两次抽到的都是合格品的概率.(解答时可用A表示1件不合格品,用B、C.D分别表示3件合格品)
(2)在这4件产品中加入若干件合格品后,进行如下试验:随机抽取1件进行检侧,然后放回,多次重复这个试验,通过大量重复试验后发现,抽到合格品的频率稳定在0.95,则可以推算出大约加入多少件合格品?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系 xOy 中,已知正比例函数 y1=﹣2x 的图象与反比例函数 y2=的图象交于 A(﹣1,a),B 两点.
(1)求出反比例函数的解析式及点 B 的坐标;
(2)观察图象,请直接写出满足 y≤2 的取值范围;
(3)点 P 是第四象限内反比例函数的图象上一点,若△POB 的面积为 1,请直接写出点 P的横坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(-4,2)、B(0,4)、C(0,2),
(1)画出△ABC关于点C成中心对称的△A1B1C;平移△ABC,若点A的对应点A2的坐标为(0,-4),画出平移后对应的△A2B2C2;
(2)△A1B1C和△A2B2C2关于某一点成中心对称,则对称中心的坐标为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD内接于⊙O,AB是⊙O的直径,点P在CA的延长线上,∠CAD=45°.
(1)若AB=4,求弧CD的长.
(2)若弧BC=弧AD,AD=AP. 求证:PD是⊙O的切线.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某超市在端午节期间开展优惠活动,凡购物者可以通过转动转盘的方式享受折扣优惠,本次活动共有两种方式,方式一:转动转盘甲,指针指向A区域时,所购买物品享受9折优惠、指针指向其它区域无优惠;方式二:同时转动转盘甲和转盘乙,若两个转盘的指针指向每个区域的字母相同,所购买物品享受8折优惠,其它情况无优惠.在每个转盘中,指针指向每个区城的可能性相同(若指针指向分界线,则重新转动转盘)
(1)若顾客选择方式一,则享受9折优惠的概率为多少;
(2)若顾客选择方式二,请用树状图或列表法列出所有可能,并求顾客享受8折优惠的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com