【题目】在Rt△ABC中,∠ABC=90°,AB=BC,E、M分别为AB、AC上的点,连接CE,BM交于点G,且BM⊥CE,O为AC的中点,连接BO交CE于点N.
(1)如图①,若AB=6,2MO=AM,求BM的长;
(2)如图②,连接OG、AG,若AG⊥OG,求证:AC=BG.
【答案】(1)2;(2)详见解析.
【解析】
(1)由等腰三角形底边中线是底边的高可知OB⊥AC,根据等腰直角三角形可求出OB=OC=OA=3,根据2MO=AM即可求出OM的长,根据勾股定理求出BM的长即可.(2)过O作OF//AG交CG于F,则∠COF=∠OGA=90°,即可证明∠COF=∠GOB,由O是AC中点可知CF=FG,通过证明△COF≌△OBG即可证明CF=GF=BG,根据勾股定理可求出AC=BG.
(1)∵OB是Rt△ABC斜边中线,
∴OB=OC=OA,
∵AB=BC=6,
∴OB⊥BC,AC==6,
∴OB=OA=3,
∵2MO=AM,
∴OM=,
∴BM==2,
(2)过点O作OF//AG交CG于F,
∵OF//AG,O为AC中点,AG⊥OG
∴CF=FG,∠FOG=∠AOG=90°,
∵∠COF+∠FOB=90°,∠GOB+∠FOB=90°,
∴∠COF=∠GOB,
∵∠OCF+∠CON=90°,∠OBG++∠BNG=90°,∠CON=∠BNG,
∴∠OCF=∠OBG,
在△OCF和△OBG中,
∴△OCF≌△OBG,
∴BG=CF=FG,
在Rt△CBG中,BC==BG,
在Rt△ABC中,AC=BC=BG.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE、DE、DC
①求证:△ABE≌△CBD;
②若∠CAE=30°,求∠BDC的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在水上治安指挥塔西侧两条航线、上有两艘巡逻艇与所在航线靠近,直线、间的距离,点在点的南偏西方向上,且,在的北偏东方向上.求:
巡逻艇与塔之间的距离.(结果保留根号)
已知巡逻艇的速度每小时比巡逻艇快,当两艘巡逻艇同时到达指挥塔的正南方向时,求巡逻艇的速度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,,点是边上一点,点,是边上两点,且,作点关于的对称点点,连接,,.
(1)依题意补全图形;
(2)猜想______°,并证明;
(3)猜想线段、、的数量关系______,并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】最近,“校园安全”受到全社会的广泛关注,巫溪中学对部分学生就校园安全知识的了解程度, 采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了如下两幅尚不完整的统计图,请你根据统计图中所提供的信息解答下列问题:
(1)扇形统计图中“基本了解”部分对应扇形的圆心角为 度;请补全条形统计图;
(2)若达到“了解”程度的人中有1名男生,2名女生,达到“不了解”程度的人中有1名男生和1名女生,若分别从达到“了解”程度和“不了解”程度的人中分别抽取1人参加校园知识竞赛,请用树状图或列表法求出恰好抽到1名男生和1名女生的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=﹣x+7的图象与正比例函数y=x的图象交于点A,点P(t,0)是x正半轴上的一个动点.
(1)点A的坐标为( , );
(2)如图1,连接PA,若△AOP是等腰三角形,求点P的坐标:
(3)如图2,过点P作x轴的垂线,分别交y=x和y=﹣x+7的图象于点B,C.是否存在正实数,使得BC=OA,若存在求出t的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】今年黄金价格一路走高,月份的黄金价格比月份增长了,由于受国际金价的影响,预计月份的黄金价格比月份增长,若这两月黄金价格的平均增长率为,则满足的关系式为( )
A. B.
C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A款汽车的售价比去年同期每辆降价2万元.如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.
(1)今年5月份A款汽车每辆销售多少万元?
(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为8.5万元,B款汽车每辆进价为6万元,公司预计用多于100万元且少于110万元的资金购进这两款汽车共15辆,问有几种进货方案?
(3)在(2)的前提下,如果B款汽车每辆售价为12万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,奖励顾客现金1.8万元,怎样进货公司的利润最大(假设能全部卖出)?最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠AOB=20°,点M,N分别是边OA,OB上的定点,点P,Q分别是边OB、OA上的动点,记∠MPQ=α,∠PQN=β,当MP+PQ+QN最小时,则β﹣α的值为_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com