【题目】如图,,点是边上一点,点,是边上两点,且,作点关于的对称点点,连接,,.
(1)依题意补全图形;
(2)猜想______°,并证明;
(3)猜想线段、、的数量关系______,并证明.
科目:初中数学 来源: 题型:
【题目】如图(1),已知点G在正方形ABCD的对角线AC上,GE⊥BC,垂足为点E,GF⊥CD,垂足为点F.
(1)证明与推断:
①求证:四边形CEGF是正方形;
②推断:的值为 :
(2)探究与证明:
将正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图(2)所示,试探究线段AG与BE之间的数量关系,并说明理由:
(3)拓展与运用:
正方形CEGF在旋转过程中,当B,E,F三点在一条直线上时,如图(3)所示,延长CG交AD于点H.若AG=6,GH=2,则BC= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(知识生成)我们已经知道,通过计算几何图形的面积可以表示一些代数恒等式.例如图1可以得到(a+b)2=a2+2ab+b2,基于此,请解答下列问题:
(1)根据图2,写出一个代数恒等式: .
(2)利用(1)中得到的结论,解决下面的问题:若a+b+c=10,ab+ac+bc=35,则a2+b2+c2= .
(3)小明同学用图3中x张边长为a的正方形,y张边长为b的正方形,z张宽、长分别为a、b的长方形纸片拼出一个面积为(2a+b)(a+2b)长方形,则x+y+z= .
(知识迁移)(4)事实上,通过计算几何图形的体积也可以表示一些代数恒等式,图4表示的是一个边长为x的正方体挖去一个小长方体后重新拼成一个新长方体,请你根据图4中图形的变化关系,写出一个代数恒等式: .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】潼南中学有一个圆形喷水池,在水池中央垂直于水面安装一个花形柱子,恰在水面中心,安置在柱子顶端处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,且在过的任一平面上,抛物线形状如图所示.图建立直角坐标系,水流喷出的高度(米)与水平距离(米)之间的关系是.请问:若不计其他因素,水池的半径至少要________米才能使喷出的水流不至于落在池外.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,格点△ABC(顶点是网格线的交点)在平面直角坐标系中的位置如图所示.
(1)将△ABC先向下平移2个单位长度,再向右平移8个单位长度,画出平移后的△A1B1C1,并写出顶点B1的坐标;
(2)作△ABC关于y轴的对称图形△A2B2C2,并写出项点B2的坐标;
(3)求△ABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在Rt△ABC中,∠ABC=90°,AB=BC,E、M分别为AB、AC上的点,连接CE,BM交于点G,且BM⊥CE,O为AC的中点,连接BO交CE于点N.
(1)如图①,若AB=6,2MO=AM,求BM的长;
(2)如图②,连接OG、AG,若AG⊥OG,求证:AC=BG.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】列二元一次方程组解应用题
甲、乙两件服装的成本共500元,商店老板为获取利润,将甲服装按50%的利润定价,乙服装按40%利润定价,在实际出售时,应顾客要求,两件服装均按定价的9折出售,这样商店共获利157元,求若两件服装都打8折,商店共可获利多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知点A(﹣5,0),B(5,0),D(2,7),连接AD交y轴于C点.
(1)求C点的坐标;
(2)动点P从B点出发以每秒1个单位的速度沿BA方向运动,同时动点Q从C点出发也以每秒1个单位的速度沿y轴正半轴方向运动(当P点运动到A点时,两点都停止运动).设从出发起运动了x秒.
①请用含x的代数式分别表示P,Q两点的坐标;
②当x=2时,y轴上是否存在一点E,使得△AQE的面积与△APQ的面积相等?若存在,求E的坐标;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com