分析 (1)DE与半圆O相切,理由为:连接OD,BD,由AB为半圆的直径,根据直径所对的圆周角为直角得到一个角为直角,可得出三角形BDC为直角三角形,又E为斜边BC的中点,利用中点的定义及斜边上的中线等于斜边的一半,得到ED=EB,利用等边对等角得到一对角相等,再由OD=OB,利用等边对等角得到一对角相等,根据∠EBO为直角,得到∠EBD与∠OBD和为90°,等量代换可得出∠ODE为直角,即DE与OD垂直,可得出DE为圆O的切线,得证;
(2)利用因式分解法求出x2-10x+24=0的解,再根据AB大于AD,且AD和AB为方程的解,确定出AB及AD的长,在直角三角形ABD中,利用勾股定理即可求出BD的长,然后根据三角形相似即可求得BC的长.
解答 (1)证明:DE与半圆O相切,理由为:![]()
连接OD,BD,如图所示:
∵AB为圆O的直径,
∴∠ADB=90°,
在Rt△BDC中,E为BC的中点,
∴DE=BE=$\frac{1}{2}$BC,
∴∠EBD=∠EDB,
∵OB=OD,
∴∠OBD=∠ODB,
又∵∠ABC=90°,即∠OBD+∠EBD=90°,
∴∠EDB+∠ODB=90°,即∠ODE=90°,
∴DE为圆O的切线;
(2)解:方程x2-10x+24=0,
因式分解得:(x-4)(x-6)=0,
解得:x1=4,x2=6,
∵AD、AB的长是方程x2-10x+24=0的两个根,且AB>AD,
∴AD=4,AB=6,
∵AB是直径,
∴∠ADB=90°,
在Rt△ABD中,根据勾股定理得:BD=$\sqrt{A{B}^{2}-A{D}^{2}}$=2$\sqrt{5}$,
∵△ABD∽△ACB,
∴$\frac{BC}{BD}$=$\frac{AB}{AD}$,即$\frac{BC}{2\sqrt{5}}$=$\frac{6}{4}$,
∴BC=3$\sqrt{5}$.
点评 此题考查了切线的判定,勾股定理,直角三角形斜边上中线的性质,圆周角定理,以及利用分解因式的方法解一元二次方程,熟练掌握定理及性质是解本题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com