精英家教网 > 初中数学 > 题目详情

【题目】如图所示,AB=AC,AFBC于点F,D、E分别为BF、CF的中点,则图中全等三角形共有____对.

【答案】4

【解析】

根据已知条件,利用HL证明Rt△ABF≌Rt△ACF,再由SAS证明△ADF≌△AEF,由SAS证明△ABD≌△ACE,由SAS证明△ABE≌△ACD,由此即可解答.

在△ABF与△ACF中,因为∠AFB=∠AFC=90°,AB=AC,AF为公共边,所以Rt△ABF≌Rt△ACF(HL),所以∠B=∠C,BF=CF.再由D、E分别是BF、FC的中点,得BD=DF=FE=EC.

在△ADF与△AEF中,因为DF=FE,AFD=∠AFE, AF=AF,所以△ADF≌△AEF(SAS).

在△ABD与△ACE中,因为AB=AC,∠B=∠C,BD=CE,所以△ABD≌△ACE(SAS).

在△ABE与△ACD中,因为AB=AC,∠B=∠C,BE=CD,所以△ABE≌△ACD(SAS),故有4对全等三角形.

故答案为:4.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】进入冬季,我市空气质量下降,多次出现雾霾天气.商场根据市民健康需要,代理销售一种防尘口罩,进货价为20元/包,经市场销售发现:销售单价为30元/包时,每周可售出200包,每涨价1元,就少售出5包.若供货厂家规定市场价不得低于30元/包,且商场每周完成不少于150包的销售任务.
(1)试确定周销售量y(包)与售价x(元/包)之间的函数关系式;
(2)试确定商场每周销售这种防尘口罩所获得的利润w(元)与售价x(元/包)之间的函数关系式,并直接写出售价x的范围;
(3)当售价x(元/包)定为多少元时,商场每周销售这种防尘口罩所获得的利润w(元)最大?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如表

x

﹣1

0

1

3

y

﹣1

3

5

3

下列结论:
①ac<0;
②当x>1时,y的值随x值的增大而减小.
③3是方程ax2+(b﹣1)x+c=0的一个根;
④当﹣1<x<3时,ax2+(b﹣1)x+c>0.
其中正确的结论是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在出行中,主动采用能降低二氧化碳排放量的交通方式,谓之“低碳出行”.明明一家积极响应政府“绿色山城,低碳出行”的号召,今年2月﹣5月明明一家减少了驾车出行,他们将2月﹣5月驾车行驶的里程统计后绘制成以下两幅不完整的统计图:

(1)扇形统计图中x= , 并补全折线统计图;
(2)某中学也积极参与“绿色山城,低碳出行”活动中,决定从4名广播社骨干成员中(其中两名男生,两名女生)选拔两名同学去演讲宣传,请用画树形图或列表的方法求所选出的两名同学恰好是一名男生一名女生的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,矩形ABCD中,AB=6,∠DBC=30°,DM平分∠BDC交BC于M,△EFG中,∠F=90°,GF= ,∠E=30°,点F、G、B、C共线,且G、B重合,△EFG沿折线B﹣M﹣D方向以每秒 个单位长度平移,得到△E1F1G1 , 平移过程中,点G1始终在折线B﹣M﹣D上,△E1F1G1与△DBM无重叠时,△E1F1G1停止运动,设△E1F1G1与△DBM重叠部分面积为S,平移时间为t,

(1)当△E1F1G1的顶点G1恰好在BD上时,t=秒;
(2)直接写出S与t的函数关系式,及自变量t的取值范围;
(3)如图2,△E1F1G1平移到G1与M重合时,将△E1F1G1绕点M旋转α°(0°<α<180°)得到△E2F2G1 , 点E1、F1分别对应E2、F2 , 设直线F2E2与直线DM交于P,与直线DC交于Q,是否存在这样的α,使△DPQ为直角三角形?若存在,求α的度数和DQ的长;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线顶点坐标为(1,3),且过点A(2,1).

(1)求抛物线解析式;
(2)若抛物线与x轴两交点分别为点B、C,求线段BC的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线 与x轴相交于点A、B,与y轴相交于点C,抛物线对称轴与x轴相交于点M,

(1)求△ABC的面积;
(2)若p是x轴上方的抛物线上的一个动点,求点P到直线BC的距离的最大值;
(3)若点P在抛物线上运动(点P异于点A),当∠PCB=∠BCA时,求直线PC的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题探究:如图①,四边形 ABCD是正方形,BE⊥BF,BE=BF,求证:△ABE≌△CBF;
方法拓展:如图②,ABCD是矩形,BC=2AB,BF⊥BE,BF=2BE,若矩形ABCD的面积为40,△ABE的面积为4,求阴影部分图形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去….若点A(3,0),B(0,4),则点B100的坐标为

查看答案和解析>>

同步练习册答案