精英家教网 > 初中数学 > 题目详情

【题目】如图,半径为1的半圆形纸片,按如图方式折叠,使对折后圆弧的中点M与圆心O重合,则图中阴影部分的面积是.

【答案】
【解析】解:如图,连接OM,交弦AB于C,

由题意知,OM⊥AB,且OC=MC=
在Rt△AOC中,∵OA=1,OC=
∴cos∠AOC= = ,AC= =
∴∠AOC=60°,AB=2AC=
∴∠AOB=2∠AOC=120°,
则S弓形ABM=S扇形OAB-S△AOB= - × × =
则S阴影= S半圆-2S弓形ABM= π×12-2( )= .
故答案为 .
分割图形可知阴影部分的面积就等于S半圆-2S弓形ABM , 圆的半径已知,则只需要求出S弓形ABM=S扇形OAB-S△AOB , 要S扇形OAB的面积,则必要求出圆心角∠AOB,则∠AOC必是特殊角;根据折叠可得OC=MC,且OM⊥AB,由垂径定理可得AC=BC,在Rt△AOC中,OA=1,OC= ,则可得∠AOC=60°,及AC的边长,即可解答.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD内接于⊙O,F是 上一点,且 = ,连接CF并延长交AD的延长线于点E,连接AC.若∠ABC=105°,∠BAC=25°,则∠E的度数为(  )

A.45°
B.50°
C.55°
D.60°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】数学活动﹣旋转变换

(1)如图①,在△ABC中,∠ABC=130°,将△ABC绕点C逆时针旋转50°得到△A′B′C,连接BB′,求∠A′B′B的大小;
(2)如图②,在△ABC中,∠ABC=150°,AB=3,BC=5,将△ABC绕点C逆时针旋转60°得到△A′B′C,连接BB′,以A′为圆心,A′B′长为半径作圆.
①猜想:直线BB′与⊙A′的位置关系,并证明你的结论;
②连接A′B,求线段A′B的长度;
(3)如图③,在△ABC中,∠ABC=α(90°<α<180°),AB=m,BC=n,将△ABC绕点C逆时针旋转2β角度(0°<2β<180°)得到△A′B′C,连接A′B和BB′,以A′为圆心,A′B′长为半径作圆,问:角α与角β满足什么条件时,直线BB′与⊙A′相切,请说明理由,并求此条件下线段A′B的长度(结果用角α或角β的三角函数及字母m、n所组成的式子表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知A,B是反比例函数y= (k>0,x>0)图象上的两点,BC∥x轴,交y轴于点C,动点P从坐标原点O出发,沿O→A→B→C(图中“→”所示路线)匀速运动,终点为C,过P作PM⊥x轴,垂足为M.设三角形OMP的面积为S,P点运动时间为t,则S关于x的函数图象大致为(  )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法正确的有( )
①面积之比为1:2的两个相似三角形的周长之比是1:4;②三视图相同的几何体是正方形;③-27没有立方根;④对角线互相垂直的四边形是菱形;⑤某中学人数相等的甲、乙两班学生参加了同一次数学测验,班平均分和方差分别为 =82分, =82分, =245, =190,那么成绩较为整齐的是乙班,
A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,点P在AB的延长线上,弦CE交AB于点D.连接OE、AC,且∠P=∠E,∠POE=2∠CAB.

(1)求证:CE⊥AB;
(2)求证:PC是⊙O的切线;
(3)若BD=2OD,PB=9,求⊙O的半径及tan∠P的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为了进一步开展“阳光体育”活动,计划用2000元购买乒乓球拍,用2800元购买羽毛球拍.已知一副羽毛球拍比一副乒乓球拍贵14元.该校购买的乒乓球拍与羽毛球拍的数量能相同吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】 如图,△ABC中,∠ACB=90°,AB=8cm,D是AB的中点.现将△BCD沿BA方向平移1cm,得到△EFG,FG交AC于H,则GH的长等于cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】线段MN在直角坐标系中的位置如图所示,若线段M′N′与MN关于y轴对称,则点M的对应点M′的坐标为( )

A.(4,2)
B.(﹣4,2)
C.(﹣4,﹣2)
D.(4,﹣2)

查看答案和解析>>

同步练习册答案