精英家教网 > 初中数学 > 题目详情

【题目】下列说法正确的有( )
①面积之比为1:2的两个相似三角形的周长之比是1:4;②三视图相同的几何体是正方形;③-27没有立方根;④对角线互相垂直的四边形是菱形;⑤某中学人数相等的甲、乙两班学生参加了同一次数学测验,班平均分和方差分别为 =82分, =82分, =245, =190,那么成绩较为整齐的是乙班,
A.1个
B.2个
C.3个
D.4个

【答案】A
【解析】解:①两个相似三角形的面积比为1:2,则它们的相似比为1: ,则周长之比为1: ,故错误;
②三视图相同的几何体不一定是正方体,如球的三视图都是圆,故错误;
③-27的立方根是-3,故错误;
④对角线互相垂直的平行四边形是菱形,故错误;
⑤平均数相等,而 > ,则乙班较为稳定 ,故正确.
故选A.
【考点精析】解答此题的关键在于理解相似三角形的性质的相关知识,掌握对应角相等,对应边成比例的两个三角形叫做相似三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x千克.
(1)请分别写出甲、乙两家快递公司快递该物品的费用y(元)与x(千克)之间的函数关系式;
(2)小明选择哪家快递公司更省钱?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题背景:
如图①,在四边形ADBC中,∠ACB=∠ADB=90°,AD=BD,探究线段AC,BC,CD之间的数量关系.
小吴同学探究此问题的思路是:将△BCD绕点D,逆时针旋转90°到△AED处,点B,C分别落在点A,E处(如图②),易证点C,A,E在同一条直线上,并且△CDE是等腰直角三角形,所以CE= CD,从而得出结论:AC+BC= CD.
简单应用:

(1)在图①中,若AC= ,BC=2 ,则CD=
(2)如图③,AB是⊙O的直径,点C、D在⊙上, = ,若AB=13,BC=12,求CD的长.
拓展规律:
(3)如图④,∠ACB=∠ADB=90°,AD=BD,若AC=m,BC=n(m<n),求CD的长(用含m,n的代数式表示)
(4)如图⑤,∠ACB=90°,AC=BC,点P为AB的中点,若点E满足AE= AC,CE=CA,点Q为AE的中点,则线段PQ与AC的数量关系是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图为放置在水平桌面上的台灯的平面示意图,灯臂AO长为40cm,与水平面所形成的夹角∠OAM为75°.由光源O射出的边缘光线OC,OB与水平面所形成的夹角∠OCA,∠OBA分别为90°和30°,求该台灯照亮水平面的宽度BC(不考虑其他因素,结果精确到0.1cm.温馨提示:sin75°≈0.97,cos75°≈0.26, ).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在四张背面完全相同的纸牌A、B、C、D,其中正面分别画有四个不同的几何图形(如图),小华将这4张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸一张.

(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌可用A、B、C、D表示);
(2)求摸出两张纸牌牌面上所画几何图形,既是轴对称图形又是中心对称图形的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,半径为1的半圆形纸片,按如图方式折叠,使对折后圆弧的中点M与圆心O重合,则图中阴影部分的面积是.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,E是CD的中点,点F在BC上,且FC= BC.图中相似三角形共有(
A.1对
B.2对
C.3对
D.4对

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】26.如图,在四边形ABCD中,∠DAB=∠ABC=90°,CD与以AB为直径的半圆相切于点E,EF⊥AB于点F,EF交BD于点G,设AD=a,BC=b.
(1)求CD的长度(用a,b表示);
(2)求EG的长度(用a,b表示);
(3)试判断EG与FG是否相等,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:
(1)4×(﹣ )﹣ +32
(2)a(a﹣3)﹣(a﹣1)2

查看答案和解析>>

同步练习册答案