精英家教网 > 初中数学 > 题目详情

【题目】初三年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中学生的参与情况,绘制成如图所示的频数分布直方图和扇形统计图(均不完整),请根据图中所给信息解答下列问题:
(1)在这次评价中,一共抽查了名学生;
(2)在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为度;
(3)请将频数分布直方图补充完整;
(4)如果全市有6000名初三学生,那么在试卷评讲课中,“独立思考”的初三学生约有多少人?

【答案】
(1)560
(2)54
(3)解:“讲解题目”的人数是:560﹣84﹣168﹣224=84(人).


(4)解:在试卷评讲课中,“独立思考”的初三学生约有:6000× =1800(人).
【解析】解:(1)调查的总人数是:224÷40%=560(人),故答案是:560;(2)“主动质疑”所在的扇形的圆心角的度数是:360× =54°,故答案是:54; (1)根据专注听讲的人数是224人,所占的比例是40%,即可求得抽查的总人数;(2)利用360乘以对应的百分比即可求解;(3)利用总人数减去其他各组的人数,即可求得讲解题目的人数,从而作出频数分布直方图;(4)利用6000乘以对应的比例即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,AC=BD=6,E、F、G、H分别是AB、BC、CD、DA的中点,则EG2+FH2=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】今年是襄阳“创建文明城市”工作的第二年,为了更好地做好“创建文明城市”工作,市教育局相关部门对某中学学生“创文”的知晓率,采取随机抽样的方法进行问卷调查,调查结果分为“非常了解”,“比校了解”,“基本了解”,和“不了解”四个等级.小辉根据调查结果绘制了如图所示的统计图,请根据提供的信息回答问题:
(1)本次调查中,样本容量是
(2)扇形统计图中“基本了解”部分所对应的圆心角的度数是;在该校2000名学生中随机提问一名学生,对“创文”不了解的概率估计值为
(3)请补全频数分布直方图.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等边△ABC中,点D,E分别在边BC,AC上,且BD=CE,AD,BE相交于点F.
(1)求证:AD=BE;
(2)求∠AFE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两人相约登山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息,下列说法正确的个数为( ) (1 )甲登山上升的速度是每分钟10米;(2)乙在A地时距地面的高度b为30米;(3)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,乙登山1分钟时,距地面的高度为15米;(4)登山时间为4分钟,9分钟,15分钟时,甲、乙两人距地面的高度差为50米.

A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一个不透明的袋子里装有两个红球和两个黄球,它们除颜色外都相同,随机从中摸出一球,记下颜色后放回袋中,充分摇匀后,再随机摸出一球,两次都摸到黄球的概率是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,以AB为直径的⊙O分别交AC,BC于点D,E.连接ED,若ED=EC.

(1)求证:AB=AC;
(2)填空:①若AB=6,CD=4,则BC=
②连接OD,当∠A的度数为时,四边形ODEB是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,抛物线y=x2+ 与y轴相交于点A,点B与点O关于点A对称

(1)填空:点B的坐标是
(2)过点B的直线y=kx+b(其中k<0)与x轴相交于点C,过点C作直线l平行于y轴,P是直线l上一点,且PB=PC,求线段PB的长(用含k的式子表示),并判断点P是否在抛物线上,说明理由;
(3)在(2)的条件下,若点C关于直线BP的对称点C′恰好落在该抛物线的对称轴上,求此时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面材料:
上课时李老师提出这样一个问题:对于任意实数x,关于x的不等式x2﹣2x﹣1﹣a>0恒成立,求a的取值范围.
小捷的思路是:原不等式等价于x2﹣2x﹣1>a,设函数y1=x2﹣2x﹣1,y2=a,画出两个函数的图象的示意图,于是原问题转化为函数y1的图象在y2的图象上方时a的取值范围.

(1)请结合小捷的思路回答:
对于任意实数x,关于x的不等式x2﹣2x﹣1﹣a>0恒成立,则a的取值范围是
(2)参考小捷思考问题的方法,解决问题:
关于x的方程x﹣4= 在0<a<4范围内有两个解,求a的取值范围.

查看答案和解析>>

同步练习册答案