精英家教网 > 初中数学 > 题目详情

【题目】今年是襄阳“创建文明城市”工作的第二年,为了更好地做好“创建文明城市”工作,市教育局相关部门对某中学学生“创文”的知晓率,采取随机抽样的方法进行问卷调查,调查结果分为“非常了解”,“比校了解”,“基本了解”,和“不了解”四个等级.小辉根据调查结果绘制了如图所示的统计图,请根据提供的信息回答问题:
(1)本次调查中,样本容量是
(2)扇形统计图中“基本了解”部分所对应的圆心角的度数是;在该校2000名学生中随机提问一名学生,对“创文”不了解的概率估计值为
(3)请补全频数分布直方图.

【答案】
(1)400
(2)144°;
(3)解:“比较了解”的人数为:400×35%=140人,补全频数分布直方图如图:


【解析】解:(1)根据题意得:80÷20%=400(人),则样本容量是400,所以答案是:400;(2)“基本了解”部分所对应的扇形圆心角是: ×360°=144°, 对“创文”不了解的概率的估计值为: ;所以答案是:144°,
【考点精析】本题主要考查了总体、个体、样本、样本容量和频数分布直方图的相关知识点,需要掌握所要考察的全体对象叫总体,组成总体的每一个考察对象叫个体,被抽取的那部分个体组成总体的一个样本,样本中个体的数目叫这个样本的容量(样本容量没有单位);特点:①易于显示各组的频数分布情况;②易于显示各组的频数差别.(注意区分条形统计图与频数分布直方图)才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,用四条线段首尾相接连成一个框架,其中AB=12,BC=14,CD=18,DA=24,则A、B、C、D任意两点之间的最长距离为(
A.24cm
B.26cm
C.32cm
D.36cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线y=﹣x2+4x的顶点为A,与x轴分别交于O、B两点,过顶点A分别作AC⊥x轴于点C,AD⊥y轴于点D,连接BD,交AC于点E,则△ADE与△BCE的面积和为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,∠BAD=70°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF等于(
A.55°
B.65°
C.75°
D.85°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知正方形ABCD,将一块等腰直角三角板的锐角顶点与A重合,并将三角板绕A点旋转,如图1,使它的斜边与BD交于点H,一条直角边与CD交于点G.

(1)请适当添加辅助线,通过三角形相似,求出 的值;
(2)连接GH,判断GH与AF的位置关系,并证明;
(3)如图2,将三角板旋转至点F恰好在DC的延长线上时,若AD=3 ,AF=5 .求DG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为弘扬中华优秀传统文化,今年2月20日举行了襄阳市首届中小学生经典诵读大赛决赛.某中学为了选拔优秀学生参加,广泛开展校级“经典诵读”比赛活动,比赛成绩评定为A,B,C,D,E五个等级,该校七(1)班全体学生参加了学校的比赛,并将比赛结果绘制成如下两幅不完整的统计图.请根据图中信息,解答下列问题:

(1)该校七(1)班共有名学生;扇形统计图中C等级所对应扇形的圆心角等于度;
(2)补全条形统计图;
(3)若A等级的4名学生中有2名男生2名女生,现从中任意选取2名参加学校培训班,请用列表法或画树状图的方法,求出恰好选到1名男生和1名女生的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=﹣x2+ax+b的图象与y轴交于点A(0,﹣2),与x轴交于点B(1,0)和点C,D(m,0)(m>2)是x轴上一点.

(1)求二次函数的解析式;
(2)点E是第四象限内的一点,若以点D为直角顶点的Rt△CDE与以A,O,B为顶点的三角形相似,求点E坐标(用含m的代数式表示);
(3)在(2)的条件下,抛物线上是否存在一点F,使得四边形BCEF为平行四边形?若存在,请求出点F的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】初三年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中学生的参与情况,绘制成如图所示的频数分布直方图和扇形统计图(均不完整),请根据图中所给信息解答下列问题:
(1)在这次评价中,一共抽查了名学生;
(2)在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为度;
(3)请将频数分布直方图补充完整;
(4)如果全市有6000名初三学生,那么在试卷评讲课中,“独立思考”的初三学生约有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在Rt△ACB中,∠C=90°,AC=3,BC=2,AD为中线.
(1)比较∠BAD和∠DAC的大小.
(2)求sin∠BAD.

查看答案和解析>>

同步练习册答案